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DISCLAIMER

This report documents version 2.0 of CXTFIT, a computer program for estimating solute
transport parameters from observed concentrations (the inverse problem) or for predicting solute
concentrations (the direct problem) using the convection-dispersion equation as the transport model.
CXTHT 2.0 is a public domain code, and as such may be used and copied freely. The code has been
verified against a large number of test cases. However, no warranty is given that the program is
completely error-free. If you do encounter problems with the code, find errors, or have suggestions

for improvement, please contact one of the authors’ at

U. S. Sdlinity Laboratory
USDA, ARS

450 West Big Springs Road
Riverside, CA 92507-46 17

Phone (909) 369-4850
Fax (909) 342-4964
e-mail titan@citrus.ucr.edu

‘The senior author may be reached at: Dept. of Agricultural Sciences, Saga Univ., Saga 840,
Japan. Phone: +81-952-24-5191; Fax: +81-952-22-6274; E-mail: nobuo@cc.saga-u.ac.jp.
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ABSTRACT

N. Toride, F. J. Lej, and M. Th. van Genuchten. The CXTFIT Code for Estimating Transport
Parameters from Laboratory or Field Tracer Experiments, Version 2.0, Research Report No. 137,
U. S. Salinity Laboratory, USDA, ARS, Riverside, CA.

Successful predictions of the fate and transport of solutes in the subsurface hinges on the availability
of accurate transport parameters. We modified and updated the CXTFIT code of Parker and van
Genuchten [1984b] for estimating solute transport parameters using a nonlinear least-squares
parameter optimization method. The program may be used to solve the inverse problem by fitting
mathematical solutions of theoretical transport models, based upon the convection-dispersion
equation (CDE), to experimental results. This approach allows parameters in the transport models
to be quantified. The program may aso be used to solve the direct or forward problem to determine
the concentration as a function of time and/or position. Three different one-dimensiona transport
models are included: (i) the conventional CDE; (ii) the chemical and physica nonequilibrium CDE;
and (iii) a stochastic stream tube model based upon the local-scale CDE with equilibrium or
nonequilibrium adsorption. The two independent stochastic parameters in the stream-tube model are
the pore-water velocity, v, and ether the disperson coefficient, D, the distribution coefficient, X, or
the nonequilibrium rate parameter, a. These pairs of stochastic parameters were described with a
bivariate lognormal probability density function (pdf). Examples are given on how transport
parameters may be determined from laboratory or field tracer experiments for severa types of initial
and boundary conditions, as well as different zero-order production profiles. A detailed description
is provided of the computer program, including the subroutines used to evaluate the analytical
solutions for optimizing model parameters. Input and output files for all mgor problems are included

in this manual.

Keywords: Solute transport, parameter estimation, convection-dispersion equation, analytical

solutions, nonequilibrium transport, stochastic transport, stream tube model.
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1. INTRODUCTION

The fate and movement of dissolved substances in soils and groundwater has generated
considerable interest out of concern for the quaity of the subsurface environment. The behavior of
solutes over relatively long spatial and tempora scales has to be assessed with the help of theoretica
models since it is usualy not feasible to carry out experimental studies over sufficiently long distances
and/or time periods. Mathematical models are often used to predict solute concentrations before
management strategies are implemented. Advances in software and hardware now permit the
simulation of subsurface transport using sophisticated mathematical models. Unfortunately, it is
generaly diicult to obtain reliable values for transport parameters such as the pore-water velocity,
the retardation factor, the dispersion coefficient, and degradation or production parameters.

The program CXTFIT 2.0 may be used to estimate parameters in several models for transport
during steady one-dimensional flow by fitting the parameters to observed laboratory or field data
obtained from solute displacement experiments. The inverse problem is solved by minimizing an
objective function, which consists of the sum of the squared differences between observed and fitted
concentrations. The objective function is minimized using a nonlinear least-squares inversion method
according to Marquardt
to predict solute distributions versus time and/or space for specified model parameters.

CXTFIT 2.0 isan extension and update of an earlier version program published more than ten
years ago by Parker and van Genuchten [1984b]. The new CXTFIT, version 2.0, again uses the
convection-dispersion equation, but with a greater number of analytical solutions to various initid,
boundary, and production value problems. The nonequilibrium transport models now contains aso
terms for zero-order production and firgt-order decay. Considerably more attention is being paid to
the use of stream tube models for simulating transport in heterogenous fields, thus reflecting the
growing popularity of stochastic approaches for modeling field-scale solute transport. A bivariate
lognormal probability density function is used to quantify stochastic flow and either stochastic
dispersion, adsorption, or nonequilibrium solute transfer. Solute concentrations across the field can
be in the resident mode or in two different types of flux-averaged modes.

This report serves to document the CXTFIT 2.0 computer program. Equilibrium transport

according to the convection-dispersion equation (CDE) is reviewed in Chapter 2. The mathematica
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problem is first stated, and solutions for the initia value problem (IVP), the boundary value problem
(BVP), and the production value problem (PVP) are listed. The program may be used to estimate
the pore-water velocity (v), the dispersion coefficient (D), the retardation factor (R), the first-order
degradation coefficient (u), and/or the zero-order production coefficient (y) from observed
concentration distributions versus time and/or distance. Nonequilibrium transport is discussed in
Chapter 3 in terms of alternative physical and chemical nonequilibrium models. Solutions of the
(bimodal) dimensionless nonequilibrium transport equation are presented for the same cases as for
equilibrium transport. In addition to v, D, R, 4, and ¥; the coefficient of partitioning between the
equilibrium and nonequilibrium phases (#) and the mass transfer coefficient (w) for transfer between
the two phases can now be fitted as well. Chapter 4 describes the stream tube model as arelatively
smple conceptudization of solute transport in heterogeneous fields. Transport in each stream tube
(the local scale) is described with the CDE as an initia or a boundary value problem. Pairs of
stochastic parameters, one always being v, are used in solutions of the CDE. Transport at the field
scae is subsequently modeled by averaging the local concentrations.

Chapter 5 provides details about the numerical evaluation of some of the analytical functions,
including the numerical integration procedures. This chapter also gives an outline of the parameter
estimation procedure. Chapter 6 serves as user’'s guide for the program. This chapter lists all
available transport models and gives instructions on how to solve the inverse problem. All possible
variables in the input file are documented in terms of separate blocks. The blocks pertain to model
selection, solution of the inverse problem definition of transport parameters, stipulation of boundary,
initial, as well as production conditions, and specification of times and positions for which the direct
problem is to be solved. Examples of input and output files are also provided. The examples are
those given on the diskette accompanying this manual. Finally, Chapter 7 illustrates the use of

CXTFIT 2.0 for several forward and inverse problems.



2. DETERMINISTIC EQUILIBRIUM CDE

2.1. Transport Model

The convection-dispersion equation (CDE) for one-dimensional transport of reactive solutes,
subject to adsorption, first-order degradation, and zero-order production, in a homogeneous soil, is

written as

de,

d d
31067 p5) = 3(”

Fl ch) - OQu,c.-p,us+0yx)+p,rx) 2.1

where c, is the volume-averaged or resident concentration of the liquid phase (ML?), s is the
concentration of the adsorbed phase (MM™), D is the dispersion coefficient (I*T'), 8is the volu-
metric water content (L’L?), J, is the volumetric water flux density (LT"), p, is the soil bulk density
(ML), u,and y, are first-order decay coefficients for degradation of the solute in the liquid and
adsorbed phases, respectively (T); ¥, (ML>T™) and y, (MM'T") are zero-order production terms
for the liquid and adsorbed phases, respectively; x is distance (L), and ¢ is time (T). We assume that
4 cannot be negative. Note that the production functions are given as a function of distance.
Solute adsorption by the solid phase is described with a linear isotherm as
s =K,c, (2.2)
where K, is an empirical distribution constant (M'L?). Using (2.2) and assuming steady-state flow
in a homogeneous soil, (2.1) may be rewritten as
R T (2.3)
ot Ix? ox r

where v (=J,/0) is the average pore-water velocity, R is the retardation factor given by

K
R=1+ 502 (2.4)
7}
and u and y are combined first- and zero-order rate coefficients:
K
b=y 2 @5)
Py 7,(x)
7(x) = yx) + = (2.6)




Note that when the first-order degradation coefficients in the liquid (x,) and adsorbed (x,) phases are
identical, (2.5) reduces to u = u R (Section 4.1).

Table 2.1 lists the dimensionless parameters that allow (2.3) to be written in reduced form as

aC, 18C, aC,
R —

oT P gaz* oz

where C, is the reduced volume-averaged solute concentration, P is the Peclet number, 4 is a first-

- uEC, + ¥E(2) @.7)

order decay coefficient (= Lu/v), ¥* is a zero-order production coefficient for equilibrium transport

(= Ly/vc,), and Z and T are the dimensionless space and time variables, respectively.

Table 2.1. Dimensionless Parameters for the Equilibrium CDEt

Parameters T z P R C u* ¥
Expressions _‘11 f & 1+ Py Kd _9_. L( 61” /+pbKd/‘s ) L( 074 * Py Y, )
L L D 7 < Gv Ovc,

t ¢, and L represent a characteristic concentration and length, respectively.

2.2. Analytical Solutions "
Solutions of the CDE will be presented in terms of the above dimensionless parameters.
Dimensional solutions can be easily obtained by substituting the parameters listed in Table 2.1 back

into the dimensionless solutions.

Resident Concentration
Analytical solutions of (2.7) are included in CXTFIT 2.0 for relatively simple initial and boundary
conditions. The general initial condition is given by
C,2,0) = C,2) 2.8)
where C, is the initial concentration as a function of Z. Either a first- or a third-type condition is used
for the inlet boundary, i.e.,
C.(0,T) = C(T) (2.92)



or

3C,0,)

1
C,0,T) - —
0.0 - 53—

= C,(T) (2.9b)

where C, is the input concentration as a function of 7. The third-type boundary condition (2.9b) in

terms of dimensional parameters is given as

dc,(0,1)
ve,(0,8) - D———= = ve (1) (2.10)
dx

where c, (7) represents a dimensional concentration that depends on real time, £. We will present
solutions for both first- and third-type inlet conditions. Note that a third-type inlet condition is to be
preferred for most transport scenarios since it conserves mass if we ignore dispersion outside the soil
[van Genuchten and Parker, 1984; Parker and van Genuchten, 1984a; van Genuchten and Parker,
1994].

The outlet condition for an effectively semi-infinite system is given by

aC,
= (2,7) =0 (2.11a)

Although no "correct” outlet condition can probably be formulated for finite systems [Parlange et
al., 1992], a zero concentration gradient is often used for a finite system of length L:

aC,
7 (1,)) =0 (2.11b)

This condition is based on the assumption that the concentration is macroscopically continuous at the
outlet and that no dispersion occurs outside the soil [Danckwerts, 1953; Wehner and Wilhelm, 1956].
Solutions for an infinite outlet condition can be applied to the finite region 0 < x < L by making the
assumption that upstream solute concentrations are not affected by the outlet boundary [Parker and
van Genuchten, 1984a]. All solutions in this report are based on the infinite outlet condition (2.11a).
In addition to the resident solution concentration, we define the total resident concentration as
the amount of solute per unit volume of soil solution:
Cr=RC, (2.12)
Flux-averaged Concentration

The injection and detection modes for several solute displacement experiments may require the



use of flux-averaged or flowing concentrations in the mathematical model [Kreft and Zuber, 1978;
Parker and van Genuchten, 1984a]. Flux-averaged concentrations are defined as the ratio of the
solute and water fluxes; they occur, for example, if a solute breakthrough curve is determined from
effluent samples. The specification of the type of concentration is discussed in Chapter 7.
For transport according to the CDE, the flux-averaged concentration can be obtained from the

resident concentration using the transformation:

1 9C,
N

C,=C -
s EYA

r

(2.13)

where the subscriptfrefers to a flux-averaged concentration. Expressions for Care easily derived
by substituting the solution for C, for a third-type inlet condition into (2.13). We may drop the
subscript of C if the difference between the two concentration modes is immaterid or if it is clear that

we refer to aresident concentration.

Superposition
Since the governing equations and the initial and boundary conditions are linear in C, the
superposition principle — as explained, for example, in Farlow [ 1982] -- may be used to express the
analytical solution as the sum of three independent subproblems involving a boundary value problem
(BVP), aninitial value problem (1VP), and a production value problem (PVP). The overall solution
can then be written as
C(ZzD =C3%zZD + ciZD + CPZD (2.19)
where the superscripts B, / and P denote the boundary, initial, and production value problems,
respectively. We first present the genera solution to each subproblem, subsequently we give severd

specific  solutions.



2.2.1. Boundary Value Problem (BVP)

General Solution
The general solution of the BVP is given by

T
C3,T) - f C(T-7) TE(Z,v)dz 2.15)
0

where the auxiliary function I'® is defined in Table 2.2. Note that T'£ is identical for C,;and C, if a
first-type inlet condition is used. General expression (2.15) will be used to obtain specific solutions

for an input concentration, C,(7), given by Dirac delta, multiple pulse, and exponential functions.

Specific Solution
1. Dirac Delta Input. For instantaneous solute application, C,(7) may be written as

CAD) = My 5(D) (2.168)
where &T) is the Dirac delta (unit impulse) function, and M, is a dimensionless amount of applied

solute. A dimensional Dirac delta input may be given by
mg
c (D = — o) (2.16b)

where &(7) is a Dirac function with respect to ¢ (T"), and my is the total amount of mass added to a
unit area of the soil liquid phase (ML?). The dimensional and dimensionless Dirac inlet conditions
are related as &7) = L&(#)/v, with My = m,/(Lc,). The following properties of the Dirac delta

function were used to evaluate the general solution:

f d(Hdt=1 (2.17a)
0
and, for any continuous function G(?),
f S () G(t)dt = G(0) (2.17b)
(4]
fd(t -a)G(t)dt = G(a) (2.17¢)
Q



Substitution of (2.16a) into (2.15) leads to

C3ZD = MyT(Z,T) (2.18)

This solution is sometimes referred to as the travel time probability density function (pdf) for the

equilibrium CDE [Jury and Roth, 1990].

2. Multiple Pulse Input Conditions. The input AN ¢

concentration for a series of successive applications - ;
of rectangular (constant) solute pulses, as illustrated Co(M fi .

0
in Figure 2.1, can be expressed as :
C(D=f, T, ‘ oo}
(2.19)
(i=1,2,..,n; T)=0 and T, -~ =)

S
where f, (i = 1,2,..,n) is constant. The analytical 1 2 e "

solution for this case may be written as the following Figure 2.1. Multiple pulse input.

sum of the solutions for the individual pulses:
C2@EZD=Y (-f)GE@T-T ) (i=12,.1£,=0) (2.20)
j=1

where G5(Z,T: 4%) is listed in Table 2.3. Note that the formulations for G,%(Z,T'4®) for 4#= 0 and
4+ 0 are different [van Genuchten and Alves, 1982].

3. Exponential Input Function. The exponential input concentration function is given by

C(T) =/, + fyexp(-42T) (2.21)
where f,, f,, and A® are constants. Substitution of (2.21) into (2.15), and integration, yields
CE(Z,T) =1, G Z T i) +f,exp(-A T)G(Z,T ;4" -RA) (2.22)

where G,5(Z,T:$2) is again given in Table 2.3. In this solution, a distinction needs to be made between
2=0(ie, £ =RA%) and 2#0. Furthermore, when A% > (u® + P/4)/R, it is necessary to evaluate the
general expression for G,%(Z,T) numerically since the parameter u in Table 2.3 becomes complex.

CXTFIT 2.0 internally selects the appropriate expression for G,*(Z,T).
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2.2.2. Initial Value Problem (IVP)

General Solution

The general solution of the IVP is given by

¢ @p = [cmrien, Tn 2.23)
0

where [,5(Z, 1, 7) is listed in Table 2.2. Specific solutions of the IVP are obtained for the same type
of C(Z) functions as for C,(7) in the BVP as discussed in the previous section, i.e., Dirac delta,

stepwise, and exponential initial distributions.

Specific Solution
1. Dirac Delta Initial Distribution. When all of the solute is initially located at position Z = Z,, the
initial concentration distribution C(Z) may be written as

C(2) =M,0(Z-2) (2.24a)
where &(Z) is the Dirac delta function, and M, is a relative amount of solute in the liquid phase. For

a dimensional distance, x, the Dirac initial condition may be given by
m
c(x) = v O(x-x,) (2.24b)

where &(x) is the Dirac function with respect to x [L'], and m, is the amount of mass initially present
in the liquid phase per unit area of soil [ML™] at x =x,. The total amount of mass per unit soil area
is given by m,R. Dimensional and dimensionless initial conditions are related according to &Z) =

L&(x) with M, =m,/(6Lc,). Substitution of (2.24a) into (2.23) yields
Cc'z1n = M,T;(Z,2,,T) (2.25)

Notice that for a third-type inlet condition, the resident concentration according to (2.25) for Z, =
0in (2.24a) — i.e., solutes reside initially at the soil surface — is identical to solution (2.18) for the

BVP with a Dirac input since I'5(Z,7) = I',%(Z,Z,=0,7) in Table 2.2.



2. Stepwise Initial Distribution. A stepwise initial concentration distribution, consisting of 7 step

functions, may be written in the form where A
U,

CI(Z) = Ui Zi sZ<Zi +1

2.26 .
(i=12,..,n; Z,=0 and Z,,,~=) 2.26)  Cy(2)

U, is a constant. Figure 2.2 shows an example U... |
of such a stepwise initial concentration U,

L1l 1A LS

be written as the sum of solutions of the IVP Z, 2, Z5 Z, Z,

distribution. The analytical solution can again

for a single pulse:
where ¢, is listed in Table 2.2 [cf. AS and A6

Figure 2.2. Stepwise initial distribution.

CZD =Y (U-U.)¥EET:Z)
= 2.27)

(i1=12,.,n;U,=0)
of van Genuchten and Alves, 1982]. For a uniform initial concentration (i.e., n=1; C;= [] for
0<Z<w), the expression for C;is identical to that of C, for a first-type inlet condition [Parker and van
Genuchten, 1984b; Toride et al., 1993a, 1993b].

3. Exponential Initial Distribution. The IVP can also be solved for an initial condition that changes
exponentially with distance:

C(2) = U, + Uyexp(-4'2) (2.28)
where U,, U, and A’ are constants. The specific solution for this condition is given by [cf. A7 and

A8 of van Genuchten and Alves, 1982]:
CAZD = U, ¢{(ZT,0)+ Uy 2T A) (2.29)

where #,F and ,° are listed in Table 2.2.
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2.2.3. Production Value Problem (PVP)

General Solution

The solution for a depth-dependent production, ¥(Z), is [Lindstrom and Boersma, 1989]:

T o

crzn = + [ [r*mriendnas (2.30)
0

0

where I, is listed in Table 2.2. This solution is quite similar as (2.23) for the IVP. Specific solutions
of the PVP for stepwise and exponential profiles can be obtained by integrating with respect to time.

Specific Solution
1. Stepwise Production Profile. Solute production having a distribution of 7 distinct steps is given

as
vE@) =, Z<Z<Z,, (i=12,.,n;Z=0and Z  -) (2.31)
where ¥, is a constant. Inserting (2.31) into (2.30) and integrating with respect to 7 yields
T
CP(ZJ)=1 f:( - YWiZ,r,Z)dr  (i=12,..,n,7,=0) 2.32)
’ RJ =1 Yio Vi )40, 4, Y () 2.

0

where the expression for ¥ is given in Table 2.2. For uniform solute production throughout the soil

profile (n = 1), (2.32) reduces to

CHzZT) =

| =

T
‘ f Yi(Z,7,Z,=0)dr (2.33)
0

This expression can be readily integrated by parts. If uf # 0, the concentration as a result of uniform

solute production becomes [cf. AS and A6 of van Genuchten and Alves, 1982]:
Y
cr@n = [1-¥ @0 -GIE T (234)

where ¢.F and G,%(Z,T) are given in Tables 2.2 and 2.3, respectively. For 4 =0, the solution is [cf.

B5 and B6 of van Genuchten and Alves, 1982]:

11



C*2ZD =y, G/ ZT) IR (235)

where G,5(Z,T) isgivenin Table 2.3.

2. Exponential Production Profile. Solute production can be expressed as an exponentia function
in a manner amilar as for the IVP:

}'E(Z) =t h exp ( - iPZ) (236)
wherey,, ¥,, and 4° are constants. The solution is now given by

crzn - [r¥fa 0 nyiaeias
0

"

= [1 - Y(Z.T;0) - GlE(Z,T;/lE)] ("> 0)
T
. * % f ¥s (Z, 7,47 )dr (2.37)
0
T
%Gf(z, T)+ %2 f Yi(Z, ;A0 )dr (4 =0)
0

where ¢,f and ¢;£ are given in Table 2.2, while G,5(Z,T,£2) and G,*(Z,T) are defined in Table 2.3.
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Table 2.2. Expressions for I and ¢ in the Solutions for the Resident and Flux-Averaged Concentrations of the Equilibrium CDE
Resident Concentration, C Flux-averaged Concentration, C,
Function First-Type Third-Type
E,.
fen | A wfe) |rez2 | pwzosy p r _P(RZ- 1) exp( ﬁE_t) RPZ cxp[-————-P(RZ-T)zl
R g 4Rt nRr 4RT R 4no 4Rt
RZ+7v
- —exp(PZ) erfc
2R VaRTIP
c —
B@nn | A _ws| | R ) ) PRG-Z)e ol _PR(-D)+ 1 expl - 25| | RP
R )N\ 4nt 4Rt 47:1' 4R R\ 4xn7
_ PR +2)+ 1]’ _ P[R(p+ 2 R(n-2)+z PR(n-2)+7}
- exp(P (n+2)+z - -
ey 4Rt | Sep(PD) ¢ ] B | Pt i
2
- Pexp(ery e R0 _[1 -RUI*ZW]exp(pZ)cxp _ PR(+2)+1) ”
[AR7/P 2 4RT
He.nz) exp( —E—s—r) 1-Lerc rez)r cxp( - #—E-E] 1-Lere rez)s lcxp( —&] erf R( T - exp(PZ)
R 2 VARTIP R 2 4R+IP 2 R ~ JARTP
1, PDerfe R(Z+Z)+t _ | pr, PZ_P[R(Z+Z‘,)+112 er RZ+Z)+r| | R . _P[R(Z-Z,.)—rlz
2 P JaRTIP nR 4Rt JAR7P Pt P Rt
1 Pt R(Z+Z)+7 o 2
+=|1+P(Z+Z) +——]exp(PZ)erfc _ R _PIR(Z+Z;)+7]
2[ R JARTIP +\E,;;CXP(PZ)CXP ST P
Ecz ..
¥ (Zr2) Vo pEr, By, ool - #ET, BT Ar_ |1 o [RZ-eaupe Uy d) o -£52, L5 47 4y
2 R RP R R RP R 2 JARTIP 2\ P R RP R
~_|RrRz-(2uP)r . [rRz-q2up)r
| 2o R0 318 owezr2ien] Rt 2 [ |
4R7/P
RZ+(1+24/
o220 et 2L LA } P, x,,( ] f_,fpz) [ Rzir + ez 2azsef 2 L2 }
' 24 R yaRt/P '




Table 2.3. Expressions for G*(Z,T) in the Solutions for the Resident

and Flux-Averaged Concentrations

G* lof o C,
First-Type Third-Type
General T, by
2
27\ Z | RP P(RZ-1)? exp( _&) { P oexp| -BRZ-D)
GEZT .t °"‘{ F) ?\J e P { vl R ) |\ =R? 4R7
0 0
P RZ+7
- —exp(PZ) erfc dr
2R JaRTIP
forQ=0 lcrfc RZ-T +-1—exp(PZ)erf RZ+T le _PRZ-T} Ty
2 VaRT/P ) 2 VaRT/P 2 JARTIP T aRT
GH(Z.T;0)
- 1(1+PZ+_’.’1) exp(PZ) erfe| L2
2 R JARTIP
for Q=0 __exp{P(l u)Z] RZ-uT 1 ﬂtp{P(l-u)z]erfc RZ-uT
(Q>-Pl4) 2 2 JARTIP l+u 2 JARTIP
GEZT;Q . lexp{P(hu)Z] ot RZT . VXP{P(IW)Z] RZ+uT |
2 2 JARTIP 1-u 2 JARTIP |
-yl j
2 e)‘p[PZ+P(1 udDT| g [ _RZAT |
-u 4R ART/P |
i
with u = |1+382 !
P
GzE(z’T) T+RZ_Terfc RZ—T T"’-—'(RZ T"'—) el’fc RZ_T
2 JaRT/P 2 p ARTIP
- B Loy ere| = [T (agir i 2R) o - PRZ-TR
JARTIP 4TR P 4RT
2
+ Z-£+——-—-————P(RZ+T) exp(PZ) erfc RZ:T
2 2 &R 3RTIP

t The integrals in G,%(Z,T;$2) are evaluated numerically for £2 > -P/4.
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3. DETERMINISTIC NONEQUILIBRIUM CDE

3.1. Transport Model

Solute transport in the subsurface is affected by a variety of chemical and physical nonequilibrium
processes [Nielsen et al., 1986; Aharoni and Sparks, 1991]. Chemical nonequilibrium may occur as
a result of kinetic adsorption while physical nonequilibrium is caused by a heterogeneous flow regime.
Chemical nonequilibrium models consider adsorption on some (or none) of the adsorption sites to be
instantaneous, while adsorption on the remaining sites is governed by first-order kinetics [Selim et
al., 1976, Cameron and Klute, 1977]. In contrast, physical nonequilibrium is often modeled by using
a two-region (dual-porosity) type formulation. The medium contains two distinct mobile (flowing)
and immobile (stagnant) liquid regions [Coats and Smith, 1964; van Genuchten and Wierenga, 1976];
mass transfer between the two regions is modeled as a first-order process.

Although the chemical and physical nonequilibrium CDE are based on different concepts, they
can be put into the same dimensionless form for conditions of linear adsorption and steady-state water
flow [Nkedi-Kizza et al., 1984; van Genuchten and Wagenet, 1989]. We will first present the
formulations of the two-site and two-region models, followed by both general and specific solutions

of the nonequilibrium CDE (cf. Chapter 2).

3.1.1. Two-Site Nonequilibrium Transport
The two-site nonequilibrium model makes a distinction between type-1 (equilibrium) and type-2
(first-order kinetic) adsorption sites [van Genuchten and Wagenet, 1989]. For steady-state flow in

a homogeneous soil, transport of a linearly adsorbed solute is given by

( 1 +fpbKd) .a_c = D azc vg__c. -

ap
Tb (1)K c-s))

g ot dx? dx (3 1)
K, ¢ fpyv. (%) ‘
_#Qc_fiob_d__,__+ ya(x)-t-______:____
as,
_a_t = a[(l—f)ch~sk] S K S t (1 _f)y,,k(x) (3.2)

where ais a first-order kinetic rate coefficient (T™"), fis the fraction of exchange sites that are always
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at equilibrium, and the subscripts e and k refer to equilibrium and kinetic adsorption sites,
respectively. Equations (3.1) and (3.2) use the customary first-order rate expression for describing
kinetic adsorption on type-2 Stes. The two-Ste adsorption moded reduces to the one-gite fully kinetic
adsorption model if f= 0 (only type-2 sites are present). The one-site model is used in Section 4.2
in the stream-tube formulation for field transport.

3.1.2. Two-Region Nonequilibrium Transport

The two-region transport model assumes that the liquid phase can be partitioned into mobile
(flowing) and immobile (stagnant) regions. Solute exchange between the two liquid regionsis
modeled as a first-order process. The two-region solute transport model is given by [see also van
Genuchten and Wagenet, 1989]:

d%
= -J,—-a(,-c,)
ox* " ox (33)

dc,,
4, +fpbKd)7 =0,D,
B (anﬂuﬁ,m+fpbKd#s,m)cm + em yﬂ,m(x) +fpb y.t,m(x)
dc,
[Him+(1 —f)pbKd]—a'Tm =d(6‘m' cim) _[ aimfuﬁ,im +(1 —f)pbKdlu:,im] cim

+0,,7um®. (1= )87, @

where the subscripts m and im refer to the mobile and immobile liquid regions, respectively, J, = v@
=v,_ 4, is the volumetric water flux density (LT "), f represents the fraction of adsorption sites that
equilibrates with the mobile liquid phase, and « is again afirst-order mass transfer coefficient (T™)
governing the rate of solute exchange between the mobile and immobile liquid regions. Note that &

is equal to 8,+8,,
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3.1.3. Dimensionless Transport Equations
If we employ the dimensionless parameters listed in Table 3.1, the two-site and two-region
models reduce to the same dimensionless form [see also Nkedi-Kizza et al., 1984]:

i, 1&C, o,
it Pap  z GG -mbrr@ (35)

PR

ac,
(1 _'B)R—a_T =w(C - G) - 4,0+ 1D (36)

where the subscripts 1 and 2 refer to equilibrium and nonequilibrium sites, respectively; g isa
partitioning coefficient, and @ is a dimensionless mass transfer coefficient. Table 3.1 defines the
various dimensionless parameters for the one-site (f = 0) and two-site adsorption models, aswell as
for the two-region model. We further assume that @ and x# cannot be negative. Note that P is
defined as D = 6,D, /6 for the two-region model (Table 3.1). In CXTFIT 2.0, v (= 6,v,/6) and D
are used as input parameters instead of v, and D,. Also note that £ for the two-region model

represents the fraction of mobile water, @,.(= 8,/6) if the solute is nonreactive.

3.2. Analytical Solutions

Similar mathematical conditions as for the equilibrium model can be formulated also for the
nonequilibrium problem [Toride et al, 19934]. If the same initid condition is used for the equilibrium
and nonequilibrium phase, we can write the genera initial condition for the dimensionless

nonequilibrium transport model as

CiZ, 0 =C(Z 0) = C.(D (3.7)
The condition at the inlet is again given by’ either afirst- or athird-type condition, i.e.,
C,(0,1) = C,(D) (3.83)
or
10C(0,T)
c(0,7) - ————— =C ,
,(0,7) P o7 (1) (3.80)

while the invoked outlet conditionis

acl( M=o
57 T (39)
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Table 3.1. Dimensionless Parameters for the Nonequilibrium CDEt

Model
Parameter One-Site? Two-Site Two-Region*
T vt vt A
L L L
X X X
7 fad = ol
L L L
D D D
R 1+ PK, 1 P K, P K,
o o e
5 1 O0+fp, K, 0 +fp,K,
R 6+pK, G+p, K,
° a(R-1)L a(1-)RL al
v v v
c < ° n
! Co co —C:
C Sk St Cim
z K,c, (1-H)K,c, c,
u Lluﬂ L(0#0+fpbKdﬂs,e) L(an/lﬂ,m+fpbKdlls,m)
! v v v
u L(R - 1) H s L(l -f)pbKdu s,k L( 0""/1 d,l'm+ (1 —f)pbKd‘u :,im)
2 v Gv v
, Ly, L(Oy,+fp,7,.) L(O, Yy u* TP Yo m)
! ve, Bvc, Gvc,
, Lpyv,, LA-1)py7, i L(6,,7m* (1S)P Y im)
2 Ovc, Ove, Ove,

t ¢, and L represent a characteristic concentration and length, respectively.
1 The one-site model is obtained by setting /= 0 in the two-site model.

*D=0,D,/4,
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Because of the linearity of the problem in terms of C, the solution can again be obtained as the
sum of independent solutions for a boundary value problem (BVP), an initial value problem (IVP),

and a production value problem (PVP), hence:

C(ZD = CAZD) + C/@D) + C 2D (3.10)

CZD =C@2ZD + CZD + G2 (3.11)

Analytical solutions of (3.5) and (3.6) subject to (3.7) through (3.9) can be derived using Laplace
transforms [Lindstrom and Narasimhan, 1973, Lindstrom and Stone, 1974; Lindstrom, 1976}.
Details of the solution process are outlined by Toride et al. [1993a], and will not be reported here.

We will follow the same approach as in Chapter 2 by first presenting the general solution and
subsequently giving several specific solutions. Expressions for the resident concentration, obtained
for both a first- and a third-type inlet condition, and the flux-averaged concentration are provided.
Solutions for the nonequilibrium CDE can be readily reduced to those for the equilibrium CDE by
first assuming @ = 0 and subsequently setting #= 1 [Toride et al., 1993a]. The nonequilibrium
solutions are given in terms of auxiliary expressions listed in Tables 3.2 and 3.3; these functions are
similar to those in Tables 2.2 and 2.3 except for the nonequilibrium parameter S.

Effluent concentrations obtained from column displacement experiments are usually viewed to
represent flux-averaged equilibrium concentrations, C, ;. Resident concentrations, on the other hand,
are typically obtained from core samples. Current measurement techniques are inadequate for
distinguishing the equilibrium and nonequilibrium phases of the resident concentration (this is
particularly true for the two-region model where a further partitioning of the liquid phase is needed).
Usually the total resident concentration, Cr, is measured:

Cr = BRC,, + (1-PRC,, (3.12)
i.e., the total amount of solute in phases 1 and 2 per unit volume of soil solution at a given point in

time and space [Parker and Valocchi, 1986].
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3.2.1. Boundary Value Problem (BVP)

General solution

Concentrations as aresult of an arbitrary input function, C,(7), can be expressed as
T
clz 1) = f C(T-19) f(Z,Ddr (3.13)
0

T

CLEZD = — f Cl(Z.7) exp[ Bl

T-PR apr ) (314

0

where
T

(2D = Ff’(z,nexp( %’%) + % f J m Yz ) H(5T) dr (3.15)

0

with T',"(Z, 7) given in Table 3.2 and where the superscript refers to the nonequilibrium solution.
Furthermore, H,(7;T) isgivenin Table 3.4 with I, as the modified Bessel function of order one.
Below we give specific solutions for cases where C,(7) in (3.8) is described by a Dirac delta, a

multiple pulse, and an exponentia function.

Specific Solution

1. Dirac Delta Input Function. The inlet condition for a Dirac delta function is(cf. (2.16a)):

C,(D) = Myo(D) (3.16)
Substitution of (3.16) into the general solutions leads to the following specific solutions:
CXZ. D) = M f(Z,T) (3.17)
T
My N
C,(ZD = (1-ﬁ)RfP‘ (Z,7) Hy(7;T) dr (3.18)

0

where the nonequilibrium travel time pdf, AZ,T), isgiven by (3.15) I',*(Z, 7) can befound in Table
3.2,and Hy(7;7) isgivenin Table 3.4 with I, as the modified Bessel function of order zero.
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2. Multiple Pulse Input Conditions. The input concentration for a series of successive applications
of rectangular solute pulses, as illustrated in Figure 2.1, is

C,(D =/ T<T<T, (i=12,.,n;T=0and T,  ,~) (3.19)
where f, denotes again an arbitrary constant. The superposition principle allows the solution to be
written as the sum of the equilibrium (¥ = 1) and nonequilibrium (k¥ = 2) concentrations resulting from

a single pulse input as published by, for example, Lindstrom and Stone [1974]:
cl(z.Dn= E S )ALZT-T) (i=1,2,..,m, k=12, f,=0) (3.20)
with

W, T

T
AT = f Yz, exp[
0

T

w N wu,t
I''(Z,7) exp| - —————
wz[ ‘ [ +1,) PR

where Goldstein's J-function, J(a,b), and a and b are given in Table 3.4.

A(ZT) = — [1-J(b,a)]dT (3.22)

The following alternative expression can be obtained for A(Z,7T) by partial integration of (3.21)
[see De Smedt and Wierenga, 1979; Toride et al., 1993a]:

wy w?T
A.(Z, =GY ZT; u+ 2| exp|-——o—
l( ]) 1 ( lul w+#2] (a)+/u2)pR
w N ] wH,
+7{-f G (Z,r,#ﬁw%] exp[-a -] (3.23)

0

I.] 2
Tomag oL 20 \Jﬂ(l “py—o L2 ]

T
wu,
A,(Z7T) = ad f GlN[Z,r;yl+ w;u_ ) exp[-a-b]

Hy

0
1,[2/ab] + wi"# (l‘ﬂ)ﬂ(f") 1,[2/ab] |dr
2

dr

(3.24)
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where G,"(Z,T:£2) is given in Table 3.3. CXTFIT always assumes that u,+ww,/(w+w,) > 0, which
Is consstent with earlier assumptions that x, and g, > 0. Differentiating the solutions for a single step
input (i.e., 4,(Z,7) and 44Z,T)) with respect to T yields the travel time pdf (cf. (3.17) and (3.18)) [De
Smedt and Wierenga, 1979].

3. Exponential Input Function. The exponential input function is given by

CT) =f, + fLexp(-4°T) (3.25)
where £, f,, and 4° are constants. As described by Leij et al. [1993], an approximate solution for this
exponential input can be derived by using the series expansion of the zero-order modified Bessel
function [9.6.12 of Abramowitz and Stegun, 1970]:

CEZ.D) =£,4,ZT) +f,exp( - 2T) GlN(Z,T; gyt @+ %ﬁﬂl - ,HRAB]
-q

T (3.26)
- fzexp(-qI)fFf’(Z,z')exp[ —’B—;(w-ﬂRq)}Ql(r) dr
B - h[exp(-gD) N +/3qu_
CZD=f4,ZT)+ a- /’)Rl o G, (ZT Byt w q PR q)
_exp(- A7) v+ PRPG _
B g G| ZTpm+w B -g ﬂR’iB] (3.27)
- fzexp(—qT)[I‘f'(Z,r)exp[ —F%(w-ﬂrq)} D,(7) dr
with
R SNC-L i) oY W ek
-y (qu)”[" I DVt
D,(7) Zl - % /ZB~q] (n—k+1)(n—k)!] (3.29)
and
_a_ w? __b @, .
P wruppr * T TAR (3025)

The auxiliary functions 4,(Z,7) and A,(Z,T) are given by (3.21) and (3.22), respectively. In analogy
to the equilibrium solution of the BVP for an exponential input (cf. (2.22)), the parameter u in
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GM(Z,T) can be complex for large #£. A convergent solution is usually obtained for a maximum n

value of 25. The solution is less appropriate for relatively large values of the product pq and/or T.
3.2.2. Initial Value Problem (IVP)

General Solution

The general solution of the IVP is

clzn-= exp( R ] f C.(mMT5(Z n,Ddn

+—f ( \J(l ﬂ)ﬂ&— A&

I B _((‘)+/‘2)T
¢ (z,z)-c(aexp{ e

(3.32)
(1 ,H)R f H(t;T) + (1 ,B)(T T)H(rT)fC(r;)P (Z,,,f)dn)

where I',"(Z, 0, 7) is listed in Table 3.2, and Hy(7,T) and H, (7, T) are given in Table 3.4. Specific

- (3.31)
f C(m)T; (2 n,7)dndr

0

solutions will again be presented for a Dirac delta, stepwise and an exponential initial distribution.
These solutions are obtained by substituting the initial profile C(Z) into (3.31) and (3.32), followed
by integration with respect to 1 (cf. Section 2.2.2).

Specific Solution
1. Dirac Delta Initial Distribution. If solutes are initially located at Z = Z,, the initial concentration
C(Z) is written as

C(D =M, 6(Z-Z) (3.33)
where &(Z) is a Dirac delta function, and M, is the dimensionless amount of solutes initially placed
at Z = Z,. The corresponding dimensional initial condition is given by (2.24b). After substituting

(3.33) into (3.31) and (3.32), the dimensionless concentrations of phases 1 and 2 become
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clazn-= exp( T] r¥zz,,T)

&2 /” Pt g | TNzz,0dr (334
* 0(7'- ) ( ﬂ)(T f) 1(7'-’ ) 2( Iead b
I _ _((‘H',uz)T
C, Z0) = C(D exp{ W

T (3.35)
- Y (Ho(r;T)+ la;@g-ﬂHl(r;T) r¥z,z,,9dr
(1-P)R Br
0

In contrast with the equilibrium CDE, the above solution for a Dirac initid condition at Z,= 0 differs
from the solution for the Dirac input (i.e., (3.17) and (3.18)).

2. Stepwise Initial Distribution. The stepwise initial distribution is given by
C@ =0, Zs2<Z,, (=12,...,n;Z,=0and Z,,~=) (3.36)

where U, denotes an arbitrary constant (cf. Figure 2.2). The solution of the VP for thiscaseis

c<zn—exp[-—/§—)}3(tf U.) ' 2T;Z)

T
. _(w+yz>T]+ © |(x +lMH(nD
Cﬂz,“'cf(z)e"p[ (AR | (1-BR (°(T’D pe ) (3.38)
0

S (U-U_ N (Z5Z) dt (i=1,2,..n;, U, = 0)
i=1

(3.37)

H(mT) *\| g ﬂ)ﬂ(}_) H(z T)]Z(U U.) ¥ Z,7;2)ds

where g,V islisted in Table 3.2.
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3. Exponential Initial Distribution. The exponential initial condition is given by
C(2) = U, + Uyexp(-4'2) (3.39)

where U,, U,, and A’ are constants. The specific solutions for this condition are

clzn-= exp( f’—T) LAACAAOR AN A

ﬂf N N (3.40)
+— (=) * | q ﬁ)(T- — L __ w7 | |04 @m0y« Uy d) |de
T
b @) o |
C2 (Z,]) - CI(Z)CXP{ (l-ﬁ)R (I-ﬂ)Rf(Ho(r’T)
0 (3.41)

*«’ LA n =

where ¢," and ¢," are listed in Table 3.2, and Hy(7,7) and H,(r,T) are given in Table 3.4.

(U4 @,7,0)+ U, 45" @ 0.4") | dr

3.2.3. Production Value Problem (PVP)

General Solution

As outlined in the Appendix of Toride et al. [1993a], the general solution for the equilibrium

concentration in case of production profiles y,(Z) and y,(Z) can be written as

J(a,b) f( r(m+—

(77) F2N(Z9 77’ f) d77 df

(@ z)ﬂR

72(77)]
W+,

T
cfan = -’;—R f exp
0 (3.42)

1
-1z, n,7)dn dr - R f
0

Two cases need to be distinguished for the solution of phase 2, viz. w+u, >0 and @ =, =0. For

the special case that w = 4, = 0, we have the simple solution

DT
(1-P)R

czn = (3.43)
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whereas for wtu, > 0 the nonequilibrium (phase 2) concentration is given by

T
Wy, (l—ﬂ)R IBR((‘H'#z) A ((‘)+.u2)ﬂR
- [1-J(b,a)] f (h(’?)* }’2(77)] I, (Z,n,7)dnds (3.44)
T
__1_f M}] T T)dn dt
AR | ‘J(l-ﬂ)r

where I',Y, which is the same as for the IVP, is listed in Table 3.2 and H,(5;7), A, (z;7), and J(a,b)
is again given in Table 3.4. Specific solutions for stepwise and exponential distributions for the
production profiles, y,(Z) and y,(Z), are given below for wtu > 0. In case wtu = 0, the
concentration for phase 1 can be readily obtained from (3.42) (cf. (2.30)), whereas a specific solution

for phase 2 can be obtained by substituting the production profile into (3.44).

Specific Solution

1. Stepwise Production Profile. The production distribution for n distinct steps is given as
@ =r,; Z,,sZ2<Z,,, (=12,.,n;Z ,=0and Z,  ,~=) (3.45)
v,(2) = Vs, Z, sZ sz (=12,..,m; Z, =0 and Z, - ) (3.46)

where ¥,,, ¥», Z,,, and Z,, are constants. For a single step (n =1, m = 1), the production is uniform
throughout the soil profile. Inserting (3.45) and (3.46) into the general solution and subsequent

integration with respect to 7 yields

T
_@OpT

G (ZD"ﬂRfe"p{ @ m)BR

T
+ __..w—f exp| - _f).'u__.._
PR(w+,) 0 (w+u,)PR

Y (1, 1, )N @TZ, ) dr
Jj=1

J(ab)z(}’l. ", i- 1)w1 (Z,t,2,,)dr

i=1

(3.47)

J(a, b) - H(z‘])}
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Czn =

1) {l—exp[‘ G
W+p (1-PR

T

+ _a.)__ f exp - —a)_'u_
PR(w+p) *#)PR
0

|

[1-J(, a)]E(rl, YD (ZTZ,)

2

(3.48)
Wh, T é(T 7)
* xp| - ——— | [1 -J(b,a)] - H(7;T)
w +,U2 ( ((‘)+lu2)ﬂR ) ( ﬂ)
. 2;(},2,] ~Yo1) W Mz, Z,,)dr (=12,..m, ¥,4=¥,,=0)
J=
where ¢,V is listed in Table 3.2.
2. Exponential Production Profile. The depth-dependent production termsare given by:
7D = Vi *haexp (- 45D (k=1,2) (3.49)
where i1 ¥e2» and 4 are constants. The concentrations are now given by
T
C(ZT)-—f x| - O#2 T\ (e b)
PR *4,)PR
Z,7,0) + Z,z';,lP dr
[71,1 WX ( - ) 71,2 Wz( 1 )] (350)
+ _w_f ex e 3 J
p| - ———=/(a,0)-H(5;T)
PR(w +u,) / +4,)PR
1o Z 50+ 7y, w;V(z, rd;)lde
T
w+u )T
Czp(Z,]) = }’2(2) {l—expl—( #2) } + © exp| - ﬂ-ﬁ;
“y (1-AR ||  BR(w+p,) (w+u,)BR
0
“U-JG [y, ¥,(Z 70+ Zw Ay
L1 ¥ Y129 )] (3.51)

+

@ wp, B(T-1)
" [1- ' H 7
WU, CXP( (m+/‘2)ﬂR J Tl (1-pr (z‘ )

) [},2, 1 lpl(Z’ (3 O) + }’2,2 qu(Z, 7 /l;)] df
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Table 3.2. Exnressions for I'Y and #" in the Solutions for the Resident and Flux-Averaeed Concentrations of the Noneanilibrium CDE

Function

Resident Concentration, C,

Flux-averaged Concentration, C,

M ’ P(BRZ - r)2 mt ’ P P(BRZ- 1) Tz 'ﬂ_RP_ _P(PRZ-1)
exp( ) T 41t1' [ 4Rt exp( hjﬁ) { wPRt exp _W e PR} ™\ 4nr exp 40Rt
P PRZ+t
- —_exp(PZ) erf
2ﬂRexP( 2) erie JAPR+IP
Léenn | . ﬂl _PIR(I-D)+ r12 pl _ PUBR(p-2)+ . lﬂRP | BRO-D)+ 7
41tr 4Rt ¢ 4,” 4Rt ﬂR Anr 2r
- P{BR(5+2)+ 1] ‘ _ PR ek x _PIBR(1-2D)+ 1)
exp(PZ)exp{ R+ ] 8. 22;2;) 1] exp ——
PR(n+2)+t JBR(n+2) - _PIBR(p+2D)+ 1 ||
Pz e PALE: } LG ]e pz-HBRT D
@z, exp[ p,] | _rfﬂR(ZZ)r ex‘{ u,]l__rfﬂR(ZZ)r m{ #1]{1__lf/3R(ZZ)T]
PR]|" 2 | VipRaP | PR 2 | JapRwP AR L 2 p VaPR+IP
+ + +Z. )+ 2 1 R(Z*’Z')*T)
Loz erte| PREZ) T ; l ids exp[PZ-—._.—.___P WR@Z:Z,) 1 - Sexp(PD) erfc ——]
2 V3PRIP nfR 4PRt VAPR/P ]
+_l_[l+P(Z+Z.)+£1 e‘(p(PZ)erfc ﬂR(ZfZi)+r} P[M(Z+Z) t])
2 PR\ JABRTIP \l anPr 4ﬂRr
P[ﬂR(Z Z)-1 )]}
4Rt
AR ) 1, | mr, Pr s T Ao A, o RZ- (1+21/P>r] 1,4 T Rr A
2° R BRP PR Az exP( AR PRP MR ){ 2 JAPRdP 2(l _)e BR ' BRP PR 4z
x| 2-erfc PRZ- (1+24/P)t .1 (1+£) exp(PZ+2AZ) erfc [M]} 2- erfc w
ViPRT | 4 VapRt VAPRIP ,
+ exo(PZ+ 27 erfcl BRZ+ (1+241P)T xp( _+Pz) erf[ﬂRZ”] + exp(PZ+2.2) exfc | BRE: (121D
e Zyerte JAPRt S JAPRTIP o 2ere JAPR7IP
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Table 3.3. Expressions for GY(Z,T) in the Solutions for the Resident
and Flux-Averaged Concentrations

€ad C, or C, C,
First-Type Third-Type
Generalt ) ) T o )
2\ zZ | RP PRZ-9| , _ L P _ P(BRZ- 1)
G(Z.T;0) fexp( ,&2] T 41trew[ 4Rt ] : ¢ BR nﬂRrexP 4BRT
0 0
P ,BRZ+r
~ ———exp(PZ) erf dr
2pR ,[7?4 Rz/P }
for Q=0 %erfc[ PRZ-T +-;-exp(PZ)erf{ PARZ+T -I—e c{ \J—XP{ P(BRZ-T)?
GIN(Z,T;O) 4 ART/P JaBRTIP 2 ABRT/P 4RT
1(1+PZ+PT) exp(PZ) erfc | LRZ:T_
2 PR 4PRT/P|
for 220 lexp{P(l—u)Z]erfc BRZ-uT 1 exp{P(l—u)Z]erfc BRZ-uT
(2> -Pl4) 2 2 JAPRTIP 1+u 2 J4PRTIP
GNZ.T:2 L1, xp[P(lw)Z]e | PRZ+uT L1 _xp{P(lw)z] BRZ +uT
2 2 JAPRTTP 1-u 2 VAPRT/P
~y2 +
2 exp[PZ+P(l u)T]erfc BRZ+T
1-u? 4R VAPRTIP |
with u = |1+39

\

t The integral in the general expression of G,"(Z,T;42) is evaluated numerically for {>-P/4.
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Table 3.4. Expressions for H(7;T) and Goldstein's J-function, J(a,b)

Function Expression

H(7)T) o '_ wr_ (+p,)(T-7) L 2w | (T-D)7
BR (1-B)R RN pQ1-p)
. [ ]
A(ET) op |- 07, @8I 20 [ @z
BR  (1-pR || RN\ B(-B)

Ha.b) 1 - exp(-b) [ ‘exp(-ALy[2yb ] di
with a= — @7 g p- @700

(@+u,)0R (1-B)R

3.3. Degradation for the Nonequilibrium CDE

Thus far, no assumptions were made regarding the values of the degradation coefficients (i.e., 4,,,
Uyt Hom» Haims Hsm> Hsim ). FOr many actual transport problems it may not be possible to determine
meaningful individual degradation parameters. The number of degradation pathways and associated
coefficients can be reduced in several ways.

As outlined by van Genuchten and Wagenet [1989], one simplification is to assume that all rate
coefficients are the same (e.g., for nuclear decay), i.e., #,= u,, = i, = p for the two-site model, or
Bom ™= Hoim = Hom = Hem = # fOr the two-region model. The dimensionless parameters, 4, and y,, for
the two-site and the two-region models (cf. Table 3.1) reduce then to

m=PRY, p=(1-PRy (3.52a,b)
where the dimensionless parameter, ¢, is defined as
y=pullv (3.53)

An alternative simplification assumes negligible decay in the adsorbed phase. The assumption of
exclusive decay in the liquid phase appears realistic for at least some pesticide-soil combinations
[Weber and Cole, 1968; Moyer et al., 1972; Ogram et al., 1985]. The dimensionless degradation
coefficients for the two-site model are now given by

U, =y, 4y, =0 (3.54a,b)
where i,= uL/v. It may also be possible that degradation occurs only in the adsorbed phase rather

than the solution phase; an appropriate ¢, is then defined from the corresponding ..
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Table 3.5 summarizes the expressions for u, and g, in terms of ¢ for the most generd case as well
asfor several limiting scenarios. We have furthermore assumed that the degradation coefficients for
decay in the liquid or adsorbed phase are the same for both regions in the two-region model when
degradation takes place exclusively in the liquid or adsorbed phase.

Table 3.5. Expressions for the Dimensionless Parameters 4, and . in (3.5) and (3.6)

One-site model Two-site model Two-region modelt
Independent degradations =¥, 4y = ¥+ (BR-1y,, by = Byt (BR-D,)Y,,,
ratesin liquid and H,=R-Dy, 4y =(1-PRY,, Hy = B ¥y * [(A1-DR-S,1¥. ..,
adsorbed phases
Identical degradation in 4 =y U, =PpRy U, =prRY
liquid and adsorbed phases dy=R-Dy Uy =(1-PRy Uy =(1-BRy
No degradation in the u =y, U=y, u =,
adsorbed phase Uy =0 Uy =0 My =D, ¥,
No degradation in the u = 4, =(BR-Dy, = (BR-P)Y,
liquid phase #y=R-DY, = (1-BRY, u, = [(1-PR-8,1¥,

t ¢,=6./6, ¢..= 6,/
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4. STREAM TUBE MODEL FOR FIELD-SCALE TRANSPORT

4.1. Introduction
Traditional deterministic approaches based upon the convection-dispersion equation (CDE) for

chemical transport and the Richards equation for water flow work relatively well for homogeneous
soils and packed laboratory soil columns. However, most field soils are far from homogeneous,
resulting in sometimes highly nonuniform flow and transport processes. Experimenta investigations
a the field scale have demonstrated the effects of heterogeneity on solute transport [e.g., Biggar and
Nielsen, 1976; Sudicky, 1986]. A variety of stochastic modeling approaches have been employed to
describe nonreactive solute transport in a heterogeneous flow field [eg., Dagan, 1984; Sposito and
Barry, 1987]. Recently, stochastic methods have also been used to study solute transport subject to
equilibrium [Kabala and Sposito, 1991] or nonequilibrium adsorption [e.g., Dagan and Cvetkovic,
1993; Bellin et al., 1993]. In these investigations, a transport equation in terms of a mean solute
concentration across the field is formulated using the covariance functions of local-scale transport
parameters. Unfortunately, it is usually not possible to determine a reliable statistica distribution for
each parameter.

In a smplified approach to stochastic modeling, the field may be viewed as a series of independent
vertical soil columns (cf. Figure 4.1). These columns are generally referred to as “ stream tubes”
[Dagan, 1993; Jury and Roth, 1990]. Local-scale transport in each stream tube is described
deterministicaly assuming a convective or convective-dispersve modd. Transport at the field scae
may be modeled by viewing sdlected parameters in the convective or convective-dispersive modd for
each tube as realizations of a stochastic process. The mean solute concentration for an entire field
is given by the ensemble average of the local concentrationsin all stream tubes. At the field scale,
the one-dimensional CDE (perfect mixing perpendicular to the flow direction) and the stream tube
model (no mixing between tubes) congtitute the limiting cases for solute transport [Jury and Fliihler,
1992].

There are several ways in which the stream tube model has been used to quantify solute transport
in heterogeneous soils. Dagan and Bresler [ 1979] and Bresler and Dagan [1979] described the

downward movement of nonreactive solutes at the field scae assuming a lognorma distribution for
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the saturated hydraulic conductivity. Jury [1982] used a so called convective lognormal transfer
function model (CLT), which neglects locd-scae dispersion. Van der Zee and van Riemsdijk [ 1986,
1987] applied the stream tube model to reactive solutes, while Destouni and Cvetkovic [ 1991]
introduced physica and chemica nonequilibrium in the loca-scae transport modd.

CXTFIT 2.0 allows the use of the stream tube model for avariety of transport scenarios.  The
anaytica solutions of the equilibrium and nonequilibrium CDE as described in Chapters 2 and 3, will
be used to model local-scale transport.  Stochastic variables are the pore water velocity, v, in
combination with ether the disperson coefficient, D, the distribution coefficient for linear adsorption,
K, or the fist-order rate coefficient for nonequilibrium adsorption, . These three different pairs of
random parameters are described with a bivariate lognorma joint probability density function (paf).
Further details can be found in Tori& andLeij [19953). Theimplications of describing the transport

problem as an initial or as a boundary problem for the stream tube model were discussed by Jury and
Scotter [ 1994] and Toride and Leij [ 19950].

Fig. 4.1. Schematic illustration of the stream tube model.
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4.2. Local-Scale Transport

We will describe solute transport at the local scale with the one-dimensional one-site chemical

nonequilibrium CDE by setting fto zero in (3.1) and (3.2):

dc d%, dc, ap,

L =D—L-y K.c-s|l-uc + 4.
i B N L R AR AR .1
3
a_j = a[K,c,-s| - us + ¥x) 4.2)

The subscript & is now dropped because there are no equilibrium adsorption sites. Furthermore,
transport equations are given in dimensional form in this chapter. For equilibrium adsorption (a-=),

the nonequilibrium CDE reduces to (cf. (2.3):

Rac, Dazc, dc, ® 43
= ~v—L-pc +y(x )
at Ix? dx rery .3)

where the retardation factor R was defined as

N P K,
7

R=1

4.4

and where x4 and y are given by (2.5) and (2.6), respectively. We will assume equal degradation rates
in the liquid and adsorbed phases, i.e., 4 = u R.

The equilibrium and nonequilibrium CDEs were solved subject to the following general initial and
boundary conditions (cf. Chapters 2 and 3):

c(x,0) = c(x), s(x0) =K, c(x) (4.5a,b)
dc.(0,1)
ve,(0,6) - 0D——— = ve (1) , (4.6)
dx
dc
— (»,t) =0 4.7)
dx

in which 6 = 0 for a first-type and 6 = 1 for a third-type inlet condition. A flux-averaged
concentration, ¢, can be obtained from ¢, according to (2. 13). The dimensionless solutions of the

BVP, IVP, and PVP were previously presented in Chapters 2 and 3.
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The solution of the local-scale transport equation depends exclusively on random transport
parameters such as v, D, and K, once the independent variables ¢t and x have been specified. For
example, Figure 4.2a shows the solution, ¢,, for the equilibrium CDE as afunction of v and X at ¢
=5d for a2-d pulse input at x = 100 cm assuming D = 20 cm®* d™ and p,/8= 4 g cm” (cf. (2.20)).
The concentration is normalized using the input concentration, ¢,. As K increases, the solute moves
slower because of increased adsorption; ahigher v isrequired for the solute to reach x =100 cm at

t=5d.

4.3 Field-Scale Transport

4.3.1. Bivariate Lognormal Distribution

The pairs of stochastic parametersin the local-scale model for transport in each stream tube are
obtained from a bivariate lognormal joint probability density function (pdf). Because of their
relatively low coefficient of variation, CV, the same values for & and p, are used for each stream tube.
The joint pdfs of v, in conjunction with either D, X, or &, are written as v,D), Av,K,), and Av, ),
respectively. The genera bivariate lognormal joint pdf is defined as [Spiegdl, 1992; p. 118]:

Y:-2p Y. Y +77?

fv,n) = 1 ext| - P “2" z 4.8)

2m0,0,v7 1-,03,7 2(1Pip)
with
In(v) -4, In(n) -u
Yv._. > , Yr] = —a- 1 (498.,b)
v n
Poy = <Y, 7> = f f Y,Y, f(v,ndvdn (4.10)
00

where n denotes D, K, or a(i.e., the second random parameter in addition to v), u and o are the
mean and standard deviation of the log-transformed variable, and p,, is the correlation coefficient

between ¥, and ¥,
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Fig. 4.2. Predicted resident concentrations according to the stream tube modd:
(8) local-scale ¢, asafunction of vand K; at x = 100 cmand r =5 d;
(b) a bivariate lognorma pdf for p,x = -0.5; and
(c) expected ¢, at x =100cmand ¢+ =54d.
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The ensemble averages of v and n are given by [Aitcheson and Brown, 1963; p. §]:
<y>= 1 2 <p>= 12
Vo =eXpl u, +;2-av , n->=¢exp| u, *5% (4.11a,b)
with the coefficient of variation CV expressed as

CV()= Jexp(d)) -1,  CV(n) = /exp(0,?) - 1 (4.12a,b)

Figure 4.2b presents an example of a bivariate lognormal pdf for v and K, with <v>= 50 cmd™,
g,=02cmd <K>=1cm’g", g, = 0.2 cm* g, and g,,, = -0.5. The distribution for v is skewed
due to the relatively high standard deviation, g,, whereas the smaller g, results in a more symmetric
digtribution for K, The vaue for v tends to increase as K, decreases.

The joint pdf given by (4.8) can be smplified for some specid cases. When two parameters are
uncorrelated, i.e., p,, = 0, the joint pdf is the product of two single pdfs:

Jov.m)=f)-f(n) (4.13)

where the single lognormal distribution is given by

1 [In(7)-p,1*
exp| - ——MM—

f(n) = o 27

(4.14)

A perfect correlation, i.e., p,,= 1 or -1, is the result of a complete dependency of the stochastic

variables with ¥, =¥, and ¥, = -T,, respectively. Subsequent use of (4.11) yields

Py %y
n) = [?v))_;:—<r7>exp( p;”avan-%anz] (4.15)
In this case, the distributions of v and 7 are given by either {v) or A n). Figure 4.3 demonstrates the
two cases of perfect correlation between v and X; — the same values for the mean and standard
deviation are used as in Figure 4.2b. For a perfect negative correlation X, decreases as v increases,
and vice versa

Additional stochastic parameters can be included as long as only two of the parameters are

independent. CXTFIT 2.0 can evaluate up to four stochastic parameters in this manner.
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Fig. 4.3. Perfect positive and negative correlation for stochastic v and K

4.3.2. Field-Scale Mean Concentration

Field-scale transport may be modeled by averaging the loca-scale concentrations over al stream
tubes. In case of weak stationarity and ergodicity of the random functions describing the stochastic
parameters [cf. de Marsily, 1986; Dagan, 1989], the spatial average for the entire field is identical

to the ensemble average:

<c(x,t)>= %fAc(x,t)dA ={£c(x,t;v,77)f(v,n)dvd17 (4.16)

where A denotes the area of the field. The local concentration can be of the resident or flux-averaged
type, in which case the corresponding ensemble averages are <c¢,> and <c¢/>, respectively. The above
assumptions of weak stationarity and ergodicity seem reasonable for our idealized pdfs.

The field-scale resident concentration, é,, which represents the resident concentration averaged
over the entire horizontal plane as determined by a “sufficient” number of samples at a particular
depth, is equal to the ensemble average, <c¢,>, given by (4.16):

é.(x,5) = <c.(x,0)> (4.17)
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Figure 4.2c shows the product of the individual resident concentrations (Figure 4.2a) and the joint
pdf(Figure 4.2b), such a product also appearsin the integrand on the right-hand side of (4.16). The
peak in Figure 4.2¢ suggests that stream tubes with v « 20 cm d* and X, = 1 cm’ g contribute the
most to the field-scale mean concentration for the selected independent variables(x = 100 cm and ¢
=5d). The totd volume of the distribution in Figure 4.2c corresponds to the ensemble average <c,>
whichisequal to é. Thefield-scaletotal resident concentration, ¢, for nonequilibrium adsorption
is obtained as the total solute amount per unit solution volume:

S
éT = <cr + &_ > = ér + f_b.<s> (418)

For equilibrium adsorption (i.e, s =X,), (4.18) can be smplified to ¢, =<Rc,>. Notice that <Rc, >
* <R><c > for a stochastic X

A field-scale flux-averaged concentration, ¢, can be defined as the ratio of the mean solute and
water fluxes in a similar manner as (4.16):

s 1 7
8 (x,t) = <ve, >/ <v> - == '!)'gvcf(x,t;v, n)f(v,n)dvdn (4.19)

The solute flux for an entire field is given by A 6<v>¢é,. Unlike the resident concentration, the
ensemble and field-scale average of this flux-averaged concentration will generaly be different (i.e,
¢ # <c) since <vcp # <v><c>. Because local values for v are not easily obtained experimentally,
estimates for ¢ will be diicult to obtain. The pdf for the pore- water velocity, Av), may be estimated
from either ¢, or <c>. Once fiv) is specified, ¢, can be caculated subsequently.

Variationsin the local resident or flux-averaged concentration between stream tubes across the
horizontal plane (i.e, a a paticular depth and time) can be characterized by its variance [Breder and
Dagan, 1981]:

Var(c(x, )] = ﬂ [e(x, 1) - <c(x, > Av, 1) did 7 = <c X(x, 8> - <c(x, 0> (4.20)
00

where ¢ may denote either ¢, or ¢,. The variance corresponding to the field-scale flux-averaged
concentration, ¢ is expressed as
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velx, ) 1
v 0 L [ [t - s> v

4.21)
=[<v2cf2(x,t)> - <vc/(x,t)>2]/<v>2

The variance for the adsorbed phase concentration s across the horizontal plane may be defined in

a similar manner as (4.20) and (4.21).

4.4. Solute Application for the Stream Tube Model

A correct mathematical description of how the solute is applied at the surface is necessary for
effective use of the stream tube model. We will present several possible formulations for the solute
application depending upon whether each stream tube contains the same amount of solute, or the
amount of solute in each stream tube is proportional to the local-scale pore-water velocity, v. Only
a third-type inlet condition (6=1 in (4.6)) will be considered; similar results can be obtained for a first-
type inlet condition.

Dirac-Type Application ‘
The instantaneous application of solute to the surface of an initially solute-free soil profile, may

be described as a boundary value problem (BVP) with ¢, = 0 and c,(?):
Mg
c, () = — o(?) (4.22)

where &) is the Dirac delta function [d"'] and m;, is the amount of mass added to a unit area of the
liquid phase in a stream tube [g cm’?] (see also (2.16b)). The amount of mass added to a unit area
of soil is given by 6m, where @is the volumetric water content. When the solute is applied uniformly
across the field during a fixed and short period of time, the amount of mass, m;, added to each stream
tube will be equal to v<m,>/<v>, where <mj,> is the mean of m, for all tubes (see input parameter
MASSST in Table 6.7).

The above scenario can also be described as an initial value problem (IVP) in which solutes are
initially distributed uniformly across the soil surface, and solute-free water (c,(¢) = 0) is applied to the

soil surface. The initial distribution is now described as
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c,(0) = %’ 6() (4.23)

where &(x) is the Dirac delta function [cm™], describing the initial solute spike at x = 0, and m, is the
amount of mass present per unit cross sectional soil area [g cm™] (see also (2.24b)). The same
amount of solute, m,, is present in all stream-tubes regardless of v.

Figure 4.4 illustrates the solute distribution between tubes for the BVP according to (4.22) and
the IVP according to (4.23). Figure 4.5 demonstrates the effect of the two different solute
applications on ¢, predicted as a function of depth at 7 =1 d (the concentrations are normalized by
assuming m,/v = 1). The same amount of nonreactive chemical (R = 1, <m,> = m,/ ) is recovered
in the soil profile, either applied at x = 0 for the BVP or present at = 0 for the IVP. Additional
parameters are; <v> = 50 cm d"!, <D>= 20 cm’ d", and ¢, = g, = 0.5. Figure 4.5 shows that more
solute remains near the surface for the IVP, while the BVP predicts somewhat faster downward
movement since a larger fraction of solutes resides in stream tubes with a higher velocity as a result
of the velocity dependent application. Although this example pertains to a Dirac delta function,
similar differences between the boundary and initial value problems occur for other influent and initial
solute concentration profiles.

The BVP will give identical results as the IVP if my, is the same for each tube, regardless of the
local v, as long as solute adsorption is instantaneous. The solutions for the BVP according to (4.22)
and the IVP according to (4.23) are identical for the equilibium CDE when m; = m,/6 (cf. (2.17) and
(2.24)). However, this equality does not hold for nonequilibrium adsorption. The solutions of the
nonequilibrium CDE for the BVP and IVP are different because of the kinetic desorption process (cf.
(3.17) and (3.34)). We finally note that for the equilibrium CDE, the ensemble average of the flux-
averaged concentration, <c;>, for the BVP with variable m, according to (4.22), is identical to the

field-scale flux-averaged concentration, ¢ for the IVP according to (4.23).
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Fig. 4.4. Tllustration of the solute distribution in stream tubes for variable and
constant mass solute applications based on the BVP and IVP.
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Fig. 4.5. Field-scale resident concentrations (¢,) versus depth as the result of
instantaneous solute application to the surface described as a BVP or an IVP.
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Pulse-Type Application

Following Parker and van Genuchten [ 1984b], we study the BV P involving a finite pulse input
for the case of either a constant or variable application time for each tube. Consider a pulse-type
solute application of concentration f; and application time ¢, (cf. Figure 2.1). If ¢, is constant for all
stream tubes, the amount of solute in each tube, my = fitv, is directly proportional to the random
velocity, v. The field-averaged mean, <m>, is given by fi£,<v>. However, the same amount of mass,
my, can be delivered to each tube by setting the application time inversely proportional to the
velocity, i.e., t,=mg/(f;v). This scenario, where both v and ¢, are random, may occur when solid
chemicals are added uniformly acrossthe field and leached subsequently by continuously applying
solute-free water. The input concentration, f;, is regarded as approximately constant since this
concentration may be governed by the solubility of the chemical. Figure 4.6 schematicaly illustrates
the solute distribution between tubes for a pulse input of constant and variable duration.

Figure 4.7 presents field-scale resident concentrations (¢,) versus depth at = 3 d as aresult of
a pulse-type solute application with a constant (,= 1 d) and variable (<,>= 1 d) solute application
time. The same amount of solute is applied to the entire field. The transport parameters for this
example are the same as those used for Figure 4.5. Again, more solute remains near the surface for
the constant mass injection. Since the amount of solute in stream tubes with a higher v islarger for
the constant duration scenario, solute moves down faster in this case compared to the case of a
variable solute application time.

We emphasize that the previous examples involving Dirac- and pulse-type applications are
somewhat hypothetical since the stream tube model does not permit mixing between stream tubes.
Redistribution between stream tubes is likely to establish an intermediate situation where the mass
in each stream tube is not constant, but where differences between tubes are also not aslarge as for
the constant duration case because of horizontal mixing. Some horizontal mixing will likely also
occur at the surface.
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Fig. 4.6. Illustration of the solute distribution in stream tubes
aiter a pulse application of constant and variable duration.
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Fig. 4.7. Field-scale resident concentrations (¢,) versus depth as a resuit
of a pulse-type solute application of constant and variable duration.
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4.5. Stream Tube Models in CXTFIT 2.0

CXTFIT 2.0 dlows the use of the stream tube model using several analytical solutions of the
CDE for local-scale transport, and with stochastic parameters described by the bivariate lognormal
pdfs can be used, viz. Av, D), Av,K,),and Av,d). Two additional

stochastic parameters can be included provided that they are perfectly corrdlated with v (cf. (4.15)).
Ifv and D are stochastic, a positive correlation between them might be plausible as suggested by
the widely used relationship for the dispersivity, A= DA. Substitution of 7= D into (4.15) for a

perfect positive correlation, p,, = 1, leadsto

9p

D(v) = [ v )?<D>exp(%avaD—%aD2) (4.24)

<y>

In case g, = a,, the relationship between v and D can be simplified to

D(v) = <D>v /<> (4.25)

This equation implies a congtant dispersivity 4 = <D>/<v> for all stream tubes (cf. Eq.(60) of Parker
and van Genuchten [ 1984b]).

A negative correlation between v and X, may aso be plausible since coarse-textured soils
generdly have a relatively high conductivity — and hence ahighv — and asmall X, — and therefore
asmall R — whereas the opposite is true for fine-textured soils. When p,.; = -1, the expression for

K, becomes (cf. (4.15)):

_ 9%
v ra 1 1
K,v) = ( <y >) " <K, >exp( —EavaKd - EUKd ? ) (4.26)

If, in addition, we assume that g, = g, this expression may be written as

K, ) = v><K,>exp(-d)) /v (4.27)

An overview of the five stream tube models in CXTFIT 2.0 will be given later in Table 6.1. The
boundary (BVP), initial (IVP), and production (PVP) value problems in terms of the field-scale
stream tube model foilow directly from the local-scae solution.
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5. NUMERICAL EVALUATION

The FORTRAN program CXTFIT 2.0 was written to evaluate the one-dimensional analytical
solutions that were discussed in Chapters 2 through 4. In this chapter we will provide background
information on numerical procedures followed to solve the direct and inverse problems. First, the
main program units of CXTFIT 2.0 are briefly reviewed. The numerica evauation of the integrals
and various special functions in the analytical solutions are discussed subsequently. The previous
version of CXTFIT published by Parker and van Genuchten [1984b] was widely used to fit
mathematical solutions to experimental results in order to estimate transport parameters. We have
included several details of the estimation procedure, which is based on the Levenberg-Marquardt
algorithm.

We note that al the information needed to use the program is given in Chapter 6. Detailed
instructions for the preparation of the input file are presented in Section 6.2, while significant
variables and arraysin CXTFIT 2.0 are listed in the Appendix. This Chapter 5 should be of specia
interest to readers who experience unexpected results due to errors in the evauation of mathematica

functions, or when trying to solve inverse problems.

5.1. Description of Program Units

CXTFIT 2.0 conssts of a main program, 22 subroutines, and 27 functions. These subprograms
are stored in nine source files. The executable program CXTFIT2 is obtained after compiling and

linking. Table 5.1 presents a list of the source files and associated subprograms.
CXTFIT2. FOR

The program unit Main controls the input, output, and parameter optimization procedures. The

subroutine MATINV performs matrix inversion for the least-squares analysis.
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Table 5.1. Source filesin CXTHT 2.0

Source file Subroutine and Function

CXTFIT2.FOR Main, MATINV

DATA.FOR DATAIN, CHECK, DATAOUT

MODEL.FOR MODEL, DIRECT

DETCDE.FOR DETCDE, BOUND, INITIAL, PRODUC

STOCDE.FOR STOCDE, CON-PROV, CONPROY, LIMIT, XLNPROB, BLNPROB

FUNC 1 .FOR CTTRAN, CBJ, CBAL, CBEXP, CBIN1, CBIN2, CIVP, C1PRO,
C2PRO, CCO, CC1, CC2, CC3, CC4, CC5, PROW

FUNC2.FOR DBEXP, EXF, EXPBIO, EXPBI1, PHI1, PHI2, GOLD,

INTEGRAL.FOR ROMB, ROMB2, CHEBY, CHEBY2, CHEBYCON,

CHEBYLOG, CHEBYLOG?2

USER.FOR CONST1, CONST2, CINPUT

DATA.FOR
Subroutine DATAIN reads data from the input file specified by the user. The datais verified with
subroutine CHECK, which gives error messages for unacceptable input. The subroutine

DATAOUT writes user-provided input data to the output file.

MODEL . FOR
Subroutine MODEL performs coefficient assignments and routes the execution to an appropriate
subroutine for evaluation of a particular model. Subroutine DIRECT calculates the concentration

for specific times and depths (i.e., the solution of the direct problem).

DETCDE.FOR

Subroutine DETCDE models deterministic transport according to the equilibrium and nonequilibrium
CDE by adding the solutions for the BVP, IVP, and PVP. Subroutines BOUND, INITIAL, and
PRODUC are used to calculate the specific solutions for the BV P, IVP, and PVP, respectively.
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STOCDE.FOR

This file calculates concentrations and variances for stochastic transport. Subroutine STOCDE
routes the execution. Function CONPROV is used for integration with respect to v, while the
function CONPROY evaluates the integrand for other stochastic parameters. Subroutine LIMIT
modifies the integration boundaries for the field-scale mean concentrations using the Newton-
Raphson method. Subroutines XLNPROB and BLNPROB quantify the single and bivariate
lognorma  distributions, respectively.

FUNC1.FOR

This file evaluates many of the functions used in the analytical solutions for the equilibrium and
nonequilibrium CDE. The integrandsin the nonequilibrium CDE are determined by the functions:
CTTRAN for (3.17) and (3.18), CBJ for (3.21) and (3.22), CBAL for (3.23) and (3.24), CBEXP
for (3.26) and (3.27), CBINL for (3.13), CBIN2 for (3.14), CIVP for the VP (i.e., (3.34), (3.35),
(3.37), (3,38), (3.40), and (3.41)), C1PRO for (3.47) and (3.50), and C2PRO for (3.48) and (3.51).
The functions listed in Tables 2.2, 2.3, 3.2, and 3.3 are evaluated as follows: CCO for I',Z or I, CC1
for G or G{¥ for 2= 0, CC2 for ¢;% or ¢,~, CC3 for ¢ or .Y, CC4 for G,£ or G," if £2+0; CC5
for I,Z or I,Y; and PRODO for G,£.

FUNC2.FOR

The remaining functions in the analytical solutions are evaluated in FUNC2.FOR. The function
DBEXP calculates the exponential function (exp), a (minimum) constraint of -100 is placed on the
value of the argument. The function EXF evaluates the product of the exponential function (exp)
and the complementary error function (erfc). EXPBIO and EXPBI1 are used to determine the
product of the exponential function (exp) and the modified Bessdl functions of order zero (l,,) and one
(I,), respectively (used in Hy and H, as shown in Table 3.4). Functions PHI1 and PHI2 are used for
exponential solute input to caculate @, in (3.28) and @, in (3.29). Goldstein's J-function (Table 3.4)
is determined with the function GOLD, which appearsin the BVP and PV P for the nonequilibrium
CDE.
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INTEGRAL.FOR

This file includes subroutines for numerica integration. Subroutines ROMB and ROMB2 perform
a Romberg quadrature on a log-transformed interval for the field-scale mean concentration.
Subroutines CHEBY, CHEBY 2, and CHEBYCON use Gauss-Chebyshev quadrature to determine
integrals in the solutions for the nonequilibrium CDE. Similarly, routines CHEBYLOG and
CHEBYLOG2 carry out the integration on a log-transformed interval.

USER.FOR

USER.FOR contains subroutines that allow a user to change settings for the numerical integration
or the input function. The default settings have been found to work well in most cases.  Subroutine
CONST1 includes parameters for the least-squares inversion method and Gauss-Chebyshev
quadrature, while CONST?2 specifies parameters for Romberg quadrature. The user can specify an
arbitrary input function with CINPUT.

5.2. Deterministic CDE

The analytical solutions described in Chapters 2 and 3 are evaluated in DETER.FOR. Several
functions for evaluating these solutions are stored in FUNC1.FOR and FUNC2.FOR. The
expressions for the equilibrium CDE (Table 2.2 and 2.3) are evaluated by setting # = 1inthe
functions for the nonequilibrium CDE (Table 3.2 and 3.3).

The function EXF(4,B) defines the product of the exponential function (exp) and the
complementary error function (erfc) [van Genuchten and Alves, 1982 |:

EXF(4,B) = exp(A) erfc(B) (5.1)

where

erfe(B) = — |exp( - 2)dr (5.2)

T3

Two different approximations are used for EXF(A,B). For 0 < B < 3 [see also (7.1.26) of
Abramowitz and Stegun, 1970]
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EXF(4,B) = exp(4 - B} (a7t + dzz'z +a,0 +a, 7 +a,7) (5.3)
where t= 1/(140.3275911B), a, = 0.254896, a, = -0.2844967, a, = 1.421414, a, = -1.453152, and
a, = 1.061405. For B>3 [(7.1.14) of Abramowitz and Stegun, 1970]:

EXF(A4, B) = ——exp(4-B?) / (B+0.5/(B+1.0/(B+1.5/(B+2.0/(B+2.5/(B+1.0)))))) 5.4)
= .

The following relation is used for negative values of B:

EXF(A4,B) =2exp(4) -EXF(4,-B) (5.5)
The above approximations do not work well if the arguments 4 and/or B are small. Therefore,
EXF(4,B) is set to zero for either of the following two conditions:

|4]>170
B<0

|4 -B?* >170

or B>0

(5.6)

Evaluation of the function G(Z,T:2) listed in Tables 2.3 and 3.3 depends on the value of 2. Note
that for an exponential input involving a large 4%, 2in solution (2.21) can be less than -P/4. In this
case the integral in the general expression for G(Z, T, £2) will be evaluated using numerical integration.

The functions Hy(z, T) and H, (7, T) in the solutions listed in Table 3.4 are evaluated with
EXPBIO and EXPBI], respectively, using (9.8.1), (9.8.2), (9.8.3), and (9.8.4) of Abramowitz and
Stegun [1970] with Y=X/3.75:

EXPBIO (X, Z) = e “I(X)

¢ 2 (1.0 +3.5156229 7% +3.0899424 1'* +1.2067492 Y ¢
+0.2659732Y8 +0.0360768 Y19 +0.0045813 Y'12)  (-3.71<X<3.75
6.7
= <
e 2%/ .[X (039894228 +0.01328592Y " + 0.00225319Y
-0.00157565Y "3 +0.00916281Y "*-0.02057706 Y ~*
L +0.026355377 5 -0.01647633 Y "7 +0.00392377Y %) (X>3.75)
EXPBI1 (X,Z) =e “I,(X)
[ Xe7(0.5+0.87890594 Y2 +0.51498869 7* +0.15084934 Y6
+0.02658733 Y8 +0.00301532719+0.00032411Y*?)  (-3.715X<3.75) 5.5

e @0/ /¥ (039894228 - 0.03988024 ¥ " -0.00362018 1 2
+0.00163801Y 2 -0.01031555Y " +0.02282967Y 3
-0.02895312Y ¢ +0.01787654Y 7 - 0.00420059Y “?) (X23.75)
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Goldstein's J-function, given in Table 3.4, is evaluated with the function GOLD. Two
approximations are used depending on the values of @ and b [van Genuchten, 1981b]. For relatively
small values of a and b, a series expansion of the Bessel function is integrated [De Smedt and

Wierenga, 1979]. For a>b with k= 11+25+0.3a < 25 we used

n bk*l

k n m
Ja,b)=exp(-a-p)} 2% X uE,  |E|<
n0 n! -0 m! (k+1)!

(5.9)

where E is the error in the series expansion containing k terms, while for a<b with k = 11+2a+0.3

< 25 we used
n n-1 b m k

k
J@,b)=1-exp(-a-b)Y. LY Z_+E, |E|<i;—’ (5.10)

n=0 n' m=0 m'

For larger values of a and b, J(a,b) is given by [Goldstein, 1953]

J(a,b)={‘14ff+3 822 5.11)
where

_Ja+/b

A= W erfc(y/z) (5.12)
1 (@-b)e * w— %,5,2)

B = = exp( -a-b) I ,(2/ab) +

~ exp(-a-b) 1,(24ab) oty = G6aby (5.13)
_I(m+172)

“n = Ti2)m! (-14)
S (2) = %((ﬂl;;)% -28,(2) (5.15)
S,(z) = 1 - 7z e *erfc(yz) (5.16)
z=(Ja - by (5.17)

The integrals in the nonequilibrium solutions were evaluated with Gauss-Chebyshev quadrature
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[e.g. Canahanet al., 1969; Press et al., 1992]. Gauss-Chebyshev quadrature offers flexibility in
terms of sdlecting the number of integration points. We obtained accurate results with 50 integration
points for most cases (generally four to five significant digits). In some extreme cases, such as for
very small B andZ or very large T, the results using 50 points may become inaccurate or incorrect.
A greater number of integration points generally results in more accurate results at the expense of
additional computer time. The latter effect is especidly of concern when solving the inverse problem.
The number of integration points, MM, can be changed in subroutine CONST1. The parameter
ICHEB in subroutine CONST1 controls the integration method. If ICHEB = 0, MM is constant at
all times. If ICHEB = 1, the program eval uates the solutions twice, namely with MM and 2xMM in
the integration routine. The number of integration points is increased until the relative change in the
solution becomes less than 0.1%. We suggest to use a set (ICHEB = 0) value of 75 for MM when
solving the inversion problem whereas ICHEB = 1 and MM = 75 appear attractive selections for the
direct problem.

An aternative method to achieve computational efficiency and accuracy is to narrow the
integration interva. Theintegrand in (3.17) for aDeltainput (i.e., f according to (3.15)) or in (3.20)
for a pulse input, becomes negligible for smal or large r due to the exponentid and complementary
error functions in T'}Y. The modified lower (T1) and upper (T2) integration limits were obtained by

restricting integration to the domain where the argument of exponential function exceeds -30:

= + ég._...‘ - + = 5.18
T1l=fRZ {1 \ 1 30 } (5.18)

= + .____60‘ + + = 5.19
T2 = BRZ {1 \ 1 30 } (5.19)

The above modifications may significantly improve the computational efficiency without loss of
accuracy, especialy for large T.

The general solution of the deterministic BVP for an arbitrary input C, is calculated by
numericaly evauating convolution integrals (2.15) for the equilibrium CDE or (3.13) and (3.14) for
the nonequilibrium CDE. The input function needs to be specified in function CINPUT in file
USER.FOR (see aso Chapter 6). Caculation of the solution should be relatively dow since a double
integral is evaluated numerically.
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5.3. Stochastic CDE
File STOCDE.FOR assigns local-scale parameters to each stream tube and evaluates field-scale

averaged concentrations. The concentration in each stream tube is determined as described in section
5.2. Numerical integration required for the field-scale concentration and variance is carried out on
in subroutines ROMB andROMB2 on a log-transformed interval using up to 14th order Romberg
guadrature. Since alognormal pdf is used, log-transformation improves the efficiency and accuracy
of the numerica integration, especialy for a large standard deviation, 0. Similar to Gauss-Chebyshev
quadrature, convergence is evaluated by comparing the integration for the Ath and &+1 th order. The
relative error criterion is set with variable STOPER. Convergence can usually be achieved for order
k< 10 with STOPER = 5x107 unless the local Peclet number, wx/D, is high. As with the determinisitc
CDE, increasing the number of integration points will result in more accurate results at the expense
of more computer time. The default upper limit for k is eight, with STOPER =5x 10" for the
evaluation of tripleintegrals (e.g., the stochastic nonequilibrium CDE with p,,#=1) or the solution
of the inverse problem. The settings for Romberg quadrature are contained in subroutine CONST2,
which appears in file USER.FOR.

To improve the computational efficiency, the upper and lower limits of integrals in the
expressions for the field-scae concentration are restricted by excluding values for v and 7 that have
a likelihood of occurrence of less than 1 x107. The integration limits are determined according to the
Newton-Raphson method in subroutine LIMIT. For a large standard deviation, for example =2
(CV = 732 %), the integration range may become too broad for numerical evaluation with this

criterion.

5.4. Parameter Estimation

CXTHT 20 estimates unknown model parameters using a nonlinear least-squares optimization
approach based on the Levenberg-Marquardt method [Marquardt, 1963]. The inverse problem is
solved by fitting an appropriate mathematical solution to observed concentration data. Most of the
calculations for the least-squares analysis are carried out in the main program (Main). The model
parameters are determined by minimizing an objective function (the sum of squared residuas, SSQ)
defined as

54



$SQ (b) = fl: [eCe) - fe;b) (5.20)
where b represents the vector of unknowns containing M adjustable parameters 4, (j = 1,..,M), and
¢ and f are the observed and fitted concentrations for the ith data point as obtained with the
independent variable(s) x; (i = 1,..,N). The inversion procedure in CXTFIT 2.0 is essentially the same
as used in its precursors [van Genuchten, 1979; 1980; Parker and van Genuchten, 1984b], and hence
will be reviewed here only briefly. The optimization routine is a simplification of the nonlinear least-
squares curve-fitting program of Meefer [1966]. A detailed description of the method is given by
Press et al. [1992].

When a model depends nonlinearly on a set of M unknown parameters b, minimization of (5.20)
has to be carried out iteratively. At the rth iteration, the correction vector b is evaluated according
to the following linear equation:

(A"+A'I) ob = Q (5.21)
where
N Jdf(x;b") of(x;b"
43 f(a,bk ) f(a,b | )

J

k=1,.M j=1..M (5.22)

>, dftx;b") :
0=y —5— [cGe) - flesbN)] = LM (5.23)
i=1 fi
and A’ is a nonnegative scalar (a Lagrangian multiplier), I is the unit matrix of order , and the new
trial vector is given by b™*/ = b’+&b. Notice that when A is very large, A+AI becomes diagonally

dominant, and (5.21) can be rewritten to

1
6b. = ———0.
J Ajj(1+'l) =J (524)

which is identical to the steepest descent method. On the other hand, when 4 approaches zero, (5.21)
converges to the Taylor series method (the Gauss-Newton method). Since a linear expansion of the
Taylor method will be accurate only over a small region, the Levenberg-Marquardt method aims to
gradually reduce A as SSQ(b) reaches its minimum.

After an initial estimate for b is provided, "best-fit" parameters are determined as follows (most

constants for the optimization are stored in subroutine CONST1 of file USER.FOR):
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) Compute SSQ(b).
) Set A=0.001 (= GA/GD in CONSTI).
3) Solve (5.2 1) for db and define a scale factor u = 1.
) Compute SSQ(b+ud b).
) If SSQ(b+ud b) < SSQ(b), decrease 4 by afactor 10 (GD in CONSTI), update the trial
vector b = b+ué b, and go back to (3).
(6) If SSQ(b+ud b) > SSQ(b), evaluate the angle & between the correction vector é b and the
steepest descent direction Q.
(7) If & <30°, decrease u by afactor 2, and return to (6).
(8) If #>30°, increase A by a factor 10, and return to (3).
The iteration stops when either of the following conditions is met:
@) The relative change in each estimation parameter (u0b; /b)) is less than the criterion STOPCR
(default value is 0.0005 in CONSTI).
(b) The relative decrease in SSQ is less than 1.0x10% (= STSQ in CONSTI) for three successive
iterations.
([)) SSQ decreases more than MIT times without meeting either condition (a) or (b) (MIT is
defined in the input file).
(d) SSQ fails to decrease during 50 consecutive iterations (= MAXTRY in CONSTI).
The derivatives of the fitted concentrations —based on the selected mathematicd model —uwith
respect to parameter b, are evaluated according to

af(x;b) ) SOe; b, (1B)b, . B )= fxsD, B, b))
b, Ab.

J

(5.25)

The current setting for A is 0.01 for all parameters (DERL in CONSTI), which we found to be
appropriate for most cases. When b; is very small or insensitive to changes in the fitted concentration,
however, approximation (5.25) for the derivative may become inaccurate. The restriction |p,,|>
1x107% is placed on the correlaion between stochastic parameters in order to evauate the derivative
according to (5.25) for the parameter estimation involving stream tube models.

The iteration procedure sometimes converges to different local minima depending upon the initia
estimate for b, as will be demonstrated in Table 7.2. It is essentid to provide redigtic initial estimates
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of the parameters, as close to the global minimum as possble. Furthermore, CXTHIT 2.0 alows the
use of maximum and minimum constraints on fitted parameters. When the new parameter value
exceeds a specified maximum or minimum value during the iteration process, the value for the
constraint is used for the next trial.

In addition to user-specified congtraints, the program employs an interna congtraint on g for the
deterministic nonequilibrium CDE. Since the fraction of equilibrium adsorption sites, £, ranges from
0to 1 for the two-site model (see Section 3. 1), the range of possible 4 vauesis

%s <1 (5.26)

A similar range holds for the fraction of adsorption sites in the mobile phase, £, for the two-region
model:

=" f<
2o P rl7T e

A maximum constraint is also placed on w; the constraint value for this parameter is defined by

0, 6, + p,K
1 1 (— d ”’] (5.27)

OMMAX in subroutine CONST1. We note that constrained parameter optimization often results
in a dightly dower rate of convergence because of a loss in flexibility.

Finally, we recommend to generally carry out severa estimation trials with and without
constraints as well as with different initial estimates for b. Also, parameter optimization (“curve
fitting”) should never be used as a panacea for a mathematical model that does not reflect the

underlying transport processes.
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6. CXTFIT 2.0 USER’S GUIDE

The previous chapters provided a background of the solute transport models and of the
numerical proceduresto evaluate their analytical solutions. This chapter serves as a self-contained
user manual for CXTFIT 2.0. First, the structure of CXTFIT 2.0 is outlined to give the user a quick
overview of the different modeling options. Second, the preparation of the input file is discussed.
Theinput is provided in amodular fashion, by using a series of blocks. Readers may only have to
read the text pertaining to the blocks for their specific application. Third, the structure of the input
and output files used for examples in this report will be reviewed. Fourth, we will compare the
differencesin input format between the first version of CXTFIT [Parker and van Genuchten, 1984b]
and the current CXTFIT 2.0.

6.1. Structure of CXTFIT 2.0

CXTHT 2.0 contains three different one-dimensiona transport models. (1) the conventiona
CDE; (ii) the chemical and physical nonequilibrium CDE; and (iii) a stochastic stream tube model
based on the local-scale CDE. Five different versions of the stochastic model can be selected
depending upon the type of adsorption present (equilibrium or nonequilibrium), and the type of
random transport parameters. Table 6.1 lists the characteristics of dl seven models in CXTHT 2.0;
the models are identified in the program by the parameter MODE. Deterministic transport can be
modeled with the equilibrium (MODE = 1) and nonequilibrium (MODE = 2) CDEs. The five
versions of the stream tube model are: equilibrium (MODE = 3) and nonequilibrium (MODE = 4)
adsorption with random v, D, and XK, (g, = 1); equilibrium (MODE = 5) and nonequilibrium
(MODE = 6) adsorption with random v, D, and X} (¢, = - 1); and nonequilibrium adsorption with
random v, D, K, and aassuming p,,= 1 and p,,, = -1 (MODE = 7). A stochastic parameter can be
made deterministic by setting its standard deviation to zero.
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Table 6.1. Overview of Transport Models in CXTFIT 2.0

MODE Modd Type Parameters Concentration Mode

Deterministic CDE
1 Equilibrium v,D,R, yor u® C,C.C#RC,
2 Nonequilibrium v,D,R, B, w, uy, 1y C,.C,, C=ARC, ,+(1-BRC,,

Stochastic Equilibrium CDE

3 Randomv, D, ad X, <v><D><K>, j or < CraCp/<v>, Ca<Cr
with p,,=1 0,, Op, Oxsr Pord C/<RC>

5 Random v, D, ad X, <v><D><Kp>, u or u%, Same as 3
with g~ 1 9,, 0p, T, Pop

Stochastic Nonequilibrium CDE

4 Random v, D, and X, <v><D><Kp>, @, yuy, 4, <AC?,(£'\,-<vC,>/<v>, C/'\,=<C2
Wlth P~ L 9., Op, O Pora CT =<CI,I+(R-1)C2J>

6 Random v, D, and X, <v><D><K>, w, u,, pa, Same as 4
Wlth Poxd - 1 0., 9p, T, Pup

7 Random v, D, K, and a <> <D> <K > < u,, Same as 4
with L= 1 and vad:'1 Hay G0 Ip, Tgity Oy Pra

Table 6.1 also presents the mode in which the concentration is detected or predicted.
Resident, flux-averaged, and total resident concentrations can be used. Although a third-type inlet
condition is generaly preferable [van Genuchten and Parker, 1994], resident concentrations are aso
given for afirst-type inlet condition. Flux-averaged concentrations are derived from the resident
concentration for a third-type inlet condition according to (2.13). Two-types of macroscopic flux-
averaged concentration are available for stochastic transport, i.e., the ensemble average of the local-
scale flux-averaged concentration, <C2, and the field-scale flux concentration, (:’\, (= <VCPI<v>).

All analytical solutions given in Chapters 2 and 3 can be evaluated with CXTFIT 2.0. The
solution of the CDE is described as the sum of (i) a boundary value problem (BVP), (ii) aninitial
value problem (IVP), and (iii) a production value problem (PVP). Table 6.2 summarizes the
functions that are used to characterize the BVP, IVP, and PVP.
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Table 6.2. Functions for the Boundary (BVP), Initial (IVP), and Production (PVP)

Value Problems in CXTFIT 2.0t

Function Input Concentration Initial Profile Production Profile
C,(T) =Mz &(T) Ci(2)=M(Z-Z))
Dirac Delta or or -
mg my
c,(t) =—4d(t) ¢;(x) =—=d(x-x,)
v g
» C,(D=f; T,<T<T,, C.(2)=U, Z2,<Z<Z,,, Y@=V, Z,sZ<Z,,,
Stepwise (i=1,2,..,n; (i=1,2,..,n; (i=1,2,..,n;
T,=0 and T, ==) Z,=0 and Z,, =) Z,=0and Z , =)
Exponential  C(T)=f+f,exp(-8T)  C(Z)=U,+ Uyexp(-4Z) Y@ =1+ v,exp(-£Z)
Arbitrary C,(T) - -

t f. U,, v, are arbitrary constants.
t The production profiles in phases 1 and 2 can be described separately for the nonequilibrium CDE.

6.2. Input Data Instruction

The input data are read from an ASCII file. The user is prompted for the name of the input

file during execution. Default names for the input and output files can be specified in the main

program. The input file consists of up to eight of the following blocks:
A. Model Description

Inverse Problem Parameters

Transport Parameters

Boundary Value Problem

Initial Value Problem

Production Value Problem

Observed Data for an Inverse Problem

m QO mmUY o w

Position and Time for a Direct Problem
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Blocks B and G are used for the inverse problem (INVERSE = 1) while Block H is used for the direct
problem (INVERSE = 0 or -1).

All data are read in using list-directed formatting (free format) except for the case INPUTM=3
in Block G. Dummy parameter values may have to be included in the input file to maintain the proper
format. Dummy comment lines are provided for each input block to identify the block and the input
variables — these may be left blank but should not be omitted. All input data are to be specified in
consistent units for mass [M], length [L], and time [T] (see also NREDU in Block A). The first line
of the input file gives NCASE, which specifies the number of cases that are considered. Several
different cases (i.e., data sets) can be handled by one input file. The distribution diskette contains all
input and output files for the examples in Chapters 4 and 7. Preparation of the input file for a
particular example is done most conveniently by modifying an existing input file for a similar case.

The characteristics of each input group (block) in the input file are further discussed below.

Line-by-line descriptions of every block are given in Tables 6.3 through 6.11.

Block A. Model Description (Table 6.3)

This block contains the parameters that define the type of problem to be solved. The
parameter INVERSE controls whether a direct INVERSE = 0 or -1) or inverse (INVERSE = 1)
problem is solved. A further distinction is made for the solution of the direct problem according to
the stream tube model. CXTFIT 2.0 will only calculate field-scale mean concentrations if INVERSE
= -1 while both mean concentrations and variances, the latter according to (4.20) and (4.21), are
evaluated if INVERSE = 0. The parameter MODE specifies the model type while MODC denotes
the concentration mode (cf. Table 6.1). The input format is different for deterministic (MODE<2)
and stochastic transport (MODE>3) for some parameters. The total resident concentration is
expressed as the amount of solute per unit volume of solution.

The parameter NREDU specifies whether the specified time and positions in the input and
output files are dimensional or dimensionless. For dimensional times and positions (NREDU = 1) the
dimensional # and y given by (2.5) and (2.6) should be specified for the equilibrium CDE (MODE
=1,3,5). Otherwise, dimensionless degradation and production terms as defined in Table 2.1 and 3.1

should be used. For a unit characteristic concentration, i.e., ¢, = 1, dimensional and dimensionless
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concentrations are obvioudy equa regardless of the value of NREDU; an exception is the adsorbed
concentration in case of chemical noneguilibrium. For the noneguilibrium CDE with arandom X,
where <s/K ¢ >*<s>/(<K >c,), the adsorbed concentration is given as <s> if NREDU = 0, and as
<s/K> if NREDU> 1.

The characteristic length, L, for nondimensional parametersis specified at the end of Block
A. CXTFIT 2.0 always uses dimensionless parameters for itsinternal operations; al dimensiona
parameters, times, and positions in the input file are internally transformed to nondimensional
variables using the (dummy) value for L in Block A. Depending on the value for NREDU, a
transformation from the dimensionless back to the dimensional variables is carried out upon
completion of all internal operations. It isrecommended to usefor L avalue of similar magnitude
as the observation scae (e.g., column length or soil profile depth).

Table 6.3. Block A - Model Description

Line Type Variable Description

0 Integer NCASE Number of cases being considered (only for the first data set).
| : : Comment line,

23 Char TITLE 1,2  Descriptive title for simulation.

4 Comment Line.

5 Integer INVERSE Calculation control code:

-1 Direct problem (no results for variance in case of the stochastic CDE).
0  Direct problem (results for given parameters).
1 Inverse problem (parameter estimation).

5 Integer MODE Model code:
1  Deterministic equilibrium CDE.
2  Deterministic nonequilibrium CDE.
3 Stochadtic equilibrium CDE with Av.K,) and g,,=1.
4 Stochastic noneguilibrium CDE with fv,K,) and £,5=1.
5  Stochastic equilibrium CDE with f{v,D) and p,~=-1.
6  Stochastic nonequilibrium CDE with Av,D) and p,~=- 1.
7  Stochagtic nonequilibrium CDE with fiv,@), p,~-1 and p,;=1.
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Table 6.3. (continued)

Line Type Variable Description

S Integer NREDUt  Input and output data code:
0 Time and position are dimensional (adsorbed concentration for the
stochastic nonequilibrium CDE is <s>).
1  Time and position are dimensional (adsorbed concentration for the
stochastic nonequilibrium CDE is <s/K>).
2 Time and position are dimensionless.
3  Dimensionless time and dimensional position.

6 - - Comment line.

7 Integer MODC Concentration mode.
Deterministic CDE (MODE=1 or 2):
1,2 Flux-averaged concentration, C,.
3  Resident concentration (third-type inlet), C..
4  Total resident concentration (third-type inlet),

CI;RCr or mclﬁ’(l 'mRCZ.r'
§ Resident concentration (first-type inlet), C,.
6  Total resident concentration (first-type inlet),

CT=RCr or mclr+(1 'mRCZr-

Stochastic CDE MODE-?=3):
1 Ensemble-averaged flux concentration, <Cz>.

2 Field-scale flux-averaged concentration, éf = <va>/<v>.

3 Field-scale resident concentration (third-type inlet), C, =<C>.

4 Ficild-scale total resident concentration (third-type inlet),
Cr;=<RC,> or<C,, + R-1)C, >

Field-scale resident concentration (first-type inlet), C", =<C.>.

6 Field-scale total resident concentration (first-type inlet),
Cp=<RC,> or<C,, + R-1)C,,>.

(7]

7 Real ZL Characteristic length for dimensionless parameters (see Table 2.1 and 3.1,
leave blank for NREDU=1 in case of equilibrium CDE with MODE=1,3,5).

t+ Dimensional and dimensionless concentrations are equal if ¢,=1 (cf. Table 2.1 and 3.1). Specify dimensional # and ¥
according to (2.5) and (2.6) for the equilibrium CDE (MODE=1,3,5) when NREDU=1. Use dimensionless z and ¥ (cf.
Table 2.1 and 3.1) in all other cases.



Block B. Inverse Problem Parameters (Table 6.4)

This block contains data for the parameter estimation procedure. The parameter MIT specifies
the maximum number of iterations. A value between 50 and 100 is recommended for MIT, afurther
reduction in SSQ is unlikely for MIT greater than 100. The inversion part is bypassed when MIT=0;
the program then calculates concentrations for the specified initial parameters. This option is
equivalent to solving the direct problem (INVERSE=I), provided that values for time and position
are specified in Block G. Thearrays INDEX(I) in Block C and C(1) in Block G are now read in as
dummy information.

The parameter ILMT serves as a flag for parameter congtraints. If the range of an estimated
parameter is known, e.g., based on physical considerations or from experimental observations,
maximum and minimum constraints can be specified by setting ILMT = 1. Although unrealistic
parameter estimates are avoided in this manner, the rate of convergence is usualy dower. If the same
value is used as maximum and minimum constraint, there will be no constraint on that particular
parameter during the optimization.

The input mass can be estimated adong with transport parameters for either a Dirac input, step
input, or pulse input by setting MASS = 1. When MASS =1, it is necessary to give parameters for
the mass estimation in Block D (ILMT, maximum and minimum congtraints). This option should only
be used as a last resort since a poor mass balance generally reflects discrepancies between the
experiment and the conceptual transport model.

The parameter MNEQ specifies the type of nonequilibrium model being implemented. For the
onesite modd (MNEQ=1), £ is dways equal to 1/R. This option may be useful when R is afitting
parameter. For the two-region model, no internal constraints on £ are applied if MNEQ=0
(0<f<0.9999 for ILMT=0 or the user can specify constraints for ILMT=1). When MNEQ>2,
internal constraints according to (5.26) or (5.27) are applied during the iteration. The user can still
impose additional constraints (ILMT=I).

The relation between degradation coefficients for phase 1 (#,) and phase 2 (&) is specified
with the parameter MDEG (cf. Table 3.5). When MDEG=0 these coefficients are estimated
independently; they are related according to Table 6.4 when MDEG>0. The fraction of mobile water,
¢,,, should be given if MNEQ=3 or if MNEQ=0 and MDEG22.
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Table 6.4. Block B - Parameters for Inverse Problem

Line Type Variable Description

1,2 - - Comment lines.

3 Integer MIT Maximum numbser of iterations (the inverse part is bypassed if MIT = 0, the program
calculates concentrations at specified Z(T) and T(I) using the initial estimates as
model parameters).

3 Integer ILMT Parameter constraint code:

0  No constraints for parameter estimation.
1  Use minimum and maximum constraints.
3 Integer MASS Total mass estimation code. This option is only available for the BVP in case of a

Dirac, step-type, or single pulse input (see Block D; enter a dummy value or zero if
MODB=0 or 24).

0  No estimation for total mass.

1  Total mass included in estimation procedure.

Omit the following lines for the equilibrium CDE (MODE=1,3,5).

4

5

Integer

Integer

MNEQ

MDEG

Comment line.

Nonequilibrium model code (MNEQ=1 for the stochastic one-site model):
0  Two-region physical nonequilibrium model (0<f<0.9999).

1 One-site chemical nonequilibrium model (#=1/R).

2 Two-site chemical nonequilibrium model (1/R<8<0.9999).

3 Two-region physical nonequilibrium model with internal constraints

(/R s B < (P, R-1)/R).

Degradation estimation code for the nonequilibrium CDE

(enter a dummy value if z, and 4, are not fitted):

0  Solution and adsorbed phase degradation rates are independent.
1  Degradation everywhere the same (4,=u,).

2 Degradation only in the liquid phase (4>0, 4,=0).

3 Degradation only in the adsorbed phase (1,=0, 4#,>0).

The following lines should only be provided if MNEQ=3 or MNEQ=0 and MDEQ2=2.

6

7

Real

PHIM

Comment line.

Mobile water fraction, $,= 6,/6.
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Block C. Transport Parameters (Tables 6.5 and 6.6)

This block contains general transport parameters. If NREDU = 1, dimensional values for u
and ¥ should be specified according to (2.5) and (2.6) for the equilibrium CDE (MODE = 1,3,5).
If NREDU*+ 1, dimensionless values for 4% and #* are used in the input and output files (see Table
2.1). The degradation and production parameters are always dimensionless for the nonequilibrium
CDE (MODE = 2,4,6,8).

Since K, is used as an input parameter for the stream tube model (MODE23), the
(deterministic) value for p,/ @ needs to be entered for evaluating R. For nonreactive solutes (K, =0
and R = 1), the value for p,/@is immaterial and a dummy value can be entered. The program uses
ensemble averages to generate dimensionless variables, for example:

=2t 2R DL

7 <> (6.1a,b)

We assume that the degradation coefficients in the liquid and adsorbed phases are identical (u,= 4,)
for stochastic equilibrium transport. Hence, # = u,<R> for a stochastic K,.

Stochastic parameters can be made deterministic by simply setting o= 0. If v is deterministic
(o, = 0), any parameter that is perfectly correlated with v will become deterministic as well (D for
MODE = 3,4; K, for MODE = 5,6; and D and X, for MODE = 8). Since the pdf is bivariate, only
one parameter will remain stochastic in this case (K, for MODE = 3,4; D for MODE = 5,6; & for
MODE = 8). CXTFIT 2.0 cannot be executed if the standard deviation of each parameter in the
stream tube model is zero. Instead, the deterministic CDE should be used as the transport model.
If the same initial estimate is provided for the standard deviations of v and 7, CXTFIT 2.0 will

assume that g, = o, throughout the optimization procedure.
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Table 6.5. Block C - Transport Parameterst

Line Type Variable Description

1,2 - - Comment lines.
Transport parameter values.

Deterministic CDE (MODE=1,2):

3 Real B(1) Initial value for each coefficient.
3 Real B(2)
3 Real BQNP)
Stochastic CDE MODE23):
3 Real B(1) Initial value for each coefficient.
3 Real B(Q2)
55 Real ]é(NP)
3 Real RHOTH Value for p/6.

Omit the following if INVERSE=0 (direct probiem).
4 Integer INDEX(1) Parameter estimation index for B(1).

0  Coefficient is known and kept constant during optimization.

1 Coefficient is unknown and estimated by curve fitting the data.
4 Integer INDEX(2) Parameter estimation index for B(2).

4 Integer INDEX(NP)  Parameter estimation index for B(NP).

Omit the following if ILMT=0 (no constraints).

5 Real BMIN()] Minimum constraint for B(1) (dummy value if INDEX(1)=0).
5 Real BMIN(2) Minimum constraint for B(2) (dummy value if NDEX(2)=0).
5 Real BMIN(NP) Minimum constraint for B(NP) (dummy value if INDEX(NP)=0).
6 Real BMAX(D] Maximum constraint for B(1) (dummy value if INDEX(1y=0).
6 Real BMAX(2) Maximum constraint for B(2) (dummy value if INDEX(2)=0).
6 Real BMAX(P) Maximum constraint for BANP) (dummy value if INDEX(NPY=0).

t Parameters for B(I) are given in Table 6.6. ,
1 No constraints will be imposed on B(I) if BMIN(D=BMAX(T).
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Table 6.6. Parameters for B(l) in Block C

MODE NP B(l) B B(3) B@#) B®5 B®6 B7 BB BO BI0O) B(ll) -

1 4 v D R porpt - - - - - - . -
2 7 v D R B w Uy Hy - - . - -
3 8 <v> <D> <Kp uporu® o, Ow Op P PO - - -
4 10 <v> <D> <Kp w ) H g, Ora dp Poxa Y L -
5 8 <> <D> <Kp porp® o, Ga O Po PO - - -
6 10 <> <D> <Kp> w 3 Ha o, O op P 510 -

7 11 <> <D> <Kd> <> H )2 g, O Jp g, Pra Py / 6

Block D. Boundary Value Problem (Table 6.7)

Table 6.2 ligts the diirent functions that can be used for the input concentration as a function
of time in the boundary value problem (BVP). The same format should be followed for the
deterministic and the stream tube model. The dimension for time in the input function should be
consistent with NREDU in Block A. The step (MODB = 2) and pulse (MODB = 3) input functions
are special cases of the general multiple pulse input scenario (MODB = 4). The maximum number
of pulsesis 10. Solutions of the BV P for a user-defined input function (MODB = 6) are obtained
according to (2.15) for the equilibrium CDE, and (3.13) and (3.14) for the nonequilibrium CDE. The
input function needs to be specified by the user in the routine CINPUT in source program
USER.FOR. The program always needs to be recompiled when the input function is being changed.
Thisoption (MODB = 6) is not available for the stream tube model (MODE = 4,6,8).

Note that INDEX, and the minimum and maximum constraints, should be specified if the tota
solute mass is a fitting parameter for either Dirac delta, step, or pulse input (MASS = 1 in Block B).
For the stochastic CDE with a random v, the parameter MASSST specifies the mass distribution

between stream tubes for a Dirac deltainput and a pulse input (cf. Figures 4.3 and 4.4).
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Table 6.7. Block D - Boundary Vaue Problem?

Line Type Variable Description

12 - Comment lines.

(0) Solute free water input

3 Integer MODB 0
(1) Dirac Deltainput

3 Integer MODB 1

4 Real PULSE( 1) mylv or <m>/<v> for dimensiona &),
M, or <M> for dimensionless 7).

4 Resal MASSST Mass distribution index for the stochastic CDE (leave blank for the deterministic
CDE, i.e, MODEx2).
0 Amount of solute in each tube is proportiona to v (mz=v<mg>/<v>).
1 Amount of solute in each tube is constant regardliess of v (my=<mg>).

Omit the following if INVERSE=0 (Block A) or MASS=0 (Block B).
5 Integer INDEX(NP+l)  Parameter estimation index for solute mass (=B(NP+l)).
0 Coefficient is known and kept constant.

1 Coeffident is assumed to be unknown and fitted to data

Omit the following if there are no constraints (ILMT=0, Block B).

6 Real BMIN(NP+1) Minimum constraint for B(NP+1) (dummy value if INDEX(NP+1)=0).
7 Real BMAX(NP+1) Maximum constraint for B(NP+1) (dummy value if INDEX(NP+1)=0).
(2)_Step input

3 Integer MODB 2

4 Real PULSE( 1) I nput concentration, ).

Omit the following if INVERSE=0 (Block A) or MASS=0 (Block B).
5 Integer INDEX(NP+1)  Parameter estimation index for input concentration (=B(NP+1)).
0 Coefficient is known and kept constant.
1 Coefficient is assumed to be unknown and fitted to the data.
Omit the following if there are no constraints (ILMT=0, Block B).
6 Resal BVINNPED Minimum constraint for B(NP+1) (dummy value if INDEX(NP+1) =O).

7 Real BMAX(NP+I) Maximum constraint for B(NP+l) (dummy value if INDEX(NP+l) =O).
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Table 6.7. (continued)

Line Type Variable Description
3) Pulse input of application ti
3 Integer MODB 3
4 Real PULSE(1) Input concentration, f;.
4 Real TPULSE(2) Application time, T, or <7>.
4 Real MASSST Mass distribution index for the stochastic CDE (leave blank if MODE<2).

0 Application time, T, is constant for all stream tubes and the amount of solutes
in each stream tube is proportional to v (MODE=S5 and 6 in prior CXTFIT
version as discussed in section 6.6).

1 Application time, T;, is equal to <T,><v>/v for each stream tube. All stream
tubes have the same amount of solutes (MODE=7 and 8 in prior CXTFIT
version as discussed in section 6.6).

Omit the following if INVERSE=0 (Block A) or MASS=0 (Block B).

S Integer

5 Integer

INDEX(NP+1) Parameter estimation index for PULSE(1)(=B(NP+1)).

0 Coefficient is known and kept constant.

1 Coefficient is assumed to be unknown and fitted to data.
INDEX(NP+2) Parameter estimation index for PULSE(2)(=B(NP+2)).

Omit the following if there are no constraints (ILMT=0, Block B).

6 Real
6 Real
7 Real
7 Real

4) Multiple pulse input

3 Integer
4 Integer
S Real
5 Real
6 Real

6 Real

NPULSE+4 Real
NPULSE+4 Real

BMIN(NP+1) Minimum constraint for BANP+1) (dummy value if INDEX(NP+1y=0).
BMINQNP+2) Minimum constraint for BONP+2) (dummy value if INDEX(NP+2)=0).

BMAX(NP+1) Maximum constraint for BONP+1) (dummy value if INDEX(NP+1) =0).
BMAX(NP+2) Maximum constraint for BONP+2) (dummy value if INDEX(NP+2) =0).

see Figure 2.1
MODB 4
NPULSE Number of pulses, n.

PULSE(1) Input concentration of the first puise, f,.
TPULSE(1) Starting time of the first pulse, 7',=0.

PULSE(2) Input concentration of the second pulse, f;.
TPULSE(2) Starting time of the second pulse, 7.

PULSE(NPULSE)  Input concentration of the last pulse, f,.
TPULSE(NPULSE)  Starting time of the last pulse, T,.
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Table 6.7. (continued)

Line Type Variable Description
(5) Exponential input concentration, £, +f,exp(-A’1

3 Integer MODB 5

4 Real PULSE(1) Value of f,.
4 Real PULSE(2) Value of f,.
4 Real TPULSE(1) Value of A%

(6) Arbitrary function, C (T)*

3 Integer MODB 6

t The dimension for time in the input function should be specified according to the value of NREDU (Block A). Use
dimensional time, ¢ (i.e., d, h, min, sec) when NREDU«<1.

{ Step and pulse input are special cases of the multiple pulse input function.

* Specify the general C,(7) in routine CINPUT in source program USER.FOR. This option is not available for the stream
tube model (MODE=4,6,8)

Block E. Initial Value Problem (Table 6.8)

Table 6.2 also lists the functions that can be used to define the initial concentration in the initial
value problem (IVP). Data entry for this block is identical for the deterministic and the stream tube
model. Similar to the BVP in Block D, the dimension for position in the initial distribution should
be consistent with the value for NREDU specified in Block A. The maximum number of steps for
a stepwise initial distribution is 10. Since a first-type inlet condition specifies the concentration at the
surface, we can define a Dirac initial condition (MODI = 4) at the surface (x, = 0, Z, = 0) in case

MODC is 5 or 6 (see (2.23) and (3.33)).
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Table 6.8. Block E - Initial Vaue Problemt

Line Type Variable Description

12 - comment lines.

(0) Zeroinitial concentration

3 Integer MOD1 0

(1) Constant initial concentration

3 Integer MOD1 1

4 Real CINI(D) Concentration, U,.

(2 Stepwise Initial Distribution? (see Figure 2.2)

3 Integer MOD1 2

4 Integer NINI Number of steps, n.

5 Real CINI(D) Concentration of the first step, U,.

5 Resdl ZINI(D) Starting position of the first step, Z,=0.
6 Redl CINI(2) Concentration of the second step, U,.
6 Real ZINI(2) Starting position of the second step, Z,.
NINI+4 Real CINI(NINI Concentration of the last step, U,
NINI+4 Resdl ZINININI) Starting position of the last step, Z,
(3) Exponential initial distribution. U, + U, exp (-4’ 2)

3 Integer MOD1 3

4 Real CINI(D) Vaueof U,.

4 Real CINI(2) Vaueof U,.

4 Resl ZINI(D) Value of 4.

(4) Dirac deltainitial condition. m,/8&x - x Y+ U, or M, XZ-Z)+ U,

3 Integer MOD1 4

4 Red CINI(2) Value of m,/8 or M,

4 Rea ZINI(?) Vaueof x; or Z, (x,, Z, #0 when MODC=5,6).
4 Real CINI( D) Vaue of U;.

+ The dimension for depth in the initial condition should be specified according to the value of NREDU (Block A).
1 Zero and constant initial concentrations are special cases of a stepwise initial distribution.
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Block F. Production Value Problem (Table 6.9)

Possible mathematical expressions for the production profiles in the production value problem
(PVP) arelisted in Table 6.2. Theinput format for the PVP is almost identical to that for the IVP
(Block E). The dimension of pogtion in the production function should again be consistent with the
value of NREDU in Block A. For the equilibrium CDE with dimensional times and positions
(NREDU =0, 1), the production function given by (2.6) is aso dimensional. Different production
functions can be specified for phases 1 and 2 in the nonequilibrium CDE when MPRO = 1.

Table 6.9. Block F - Production Vaue Problemt

Line Type Variable Description

12 - Comment lines.
(0) No production term

3 [nteger MODP 0

(1) Constant production

3 [nteger MODP 1
4 Red GAMMAIL(1) Production value in the equilibrium phase, 7, or 7,

Omit the following for the equilibrium CDE (MODE=1,35).

5 Red GAMMA2(1) Production value in the nonequilibrium phase, 5,

(2)_Stepwise production profile}

3 [nteger MODP 2

3 Integer MPRO Production function code for a nonequilibrium phase (leave blank if

MODE=13,0r 5, i.e, the equilibrium CDE):
0 Same conditions for equilibrium and nonequilibrium phases.
1 Different conditions for equilibrium and nonequilibrium phases.

4 Integer NPRO 1 Number of stepsin an equilibrium phase, n.
5 Real GAMMAI(1) Production of the first step in the equilibrium phase, 7., or 7.,
5 Real ZPROI(1) Starting position of the first step, Z; or Z,,=0.
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Table 6.9. (continued)

Line Type Variable Description

6 Real GAMMA1(2) Production of the second step in the equilibrium phase, y,, or 7,,.

6 Real ZPRO1(2) Starting position of the second step, Z, or Z, ,.

NPRO1+4 Real GAMMAI(NPRO1)  Production of the NPRO1* step in the equilibrium phase, 7, or 7;,.
NPRO1+4 Real ZPROI(NPROI) Starting position of the NPRO1* step, Z, or Z, .

Omit the following for the equilibrium CDE (MODE=1,3,5) or if MPRO=0.

NPRO1+5  Integer NPRO2 Number of steps in the nonequilibrium phase, m.

NPRO1+6 Real GAMMA2(1) Production of the first step for the nonequilibrium phase, ¥,,.

NPRO1+6 Real ZPRO2(1) Starting position of the first step, Z,,=0.

NPRO1+7 Real GAMMA2(2) Production of the second step in the nonequilibrium phase, ¥,,.

NPRO1+7  Real ZPRO2(2) Starting position of the second step, Z,,.

NPROL s Real GAMMA2(NPRO1)  Production of the NPRO2* step in the nonequilibrium phase, ¥, .
. » .

NPROL s Real ZPRO2(NPROI) Starting position of the NPRO2® step, Z, .

(3) Exponential production profiles.y, + ¥, exp (-4°

3 Integer MODP 3

3 Integer MPRO Production function code for nonequilibrium models (leave blank if
MODE=1,3, or 5, i.e., the equilibrium CDE):
0 Same conditions for equilibrium and nonequilibrium phases.
1 Different conditions for equilibrium and nonequilibrium phases.

4 Real GAMMAI(1) Value of y, or 7, .
4 Real GAMMAL(1) Value of y, or 7, ,.
4 Real ZPRO1(1) Value of A° or 4%,

Omit the following if MPRO=0 or for the equilibrium CDE (MODE=1,3,5).

5 Real GAMMA2(1) Value of 7, ,.
5 Real GAMMAX(1) Value of 7,,.
5 Real ZPRO2(1) Value of A”,.

+ Provide dimensional ¥ according to (2.6) for the equilibrium CDE (MODE=1,3,5) with NREDU=1. Otherwise, use
dimensionless ¥ as shown in Table 2.1 and 3.1 (see NREDU in Block A).
t Constant production is a special case of a stepwise production profile.
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Block G. Observed Data for Inverse Problem (Table 6.10)

Observed data can be given in four different formats: (a) position, time, and observed
concentration (INPUTM=0); (b) time and observed concentration at a particular position (INPUTM
= 1); (c) position and concentration at a particular time (INPUTM = 2); and (d) similar as (a) but the
data are now given in a fixed format to allow the use of input files consistent with the previous
CXTFIT version (INPUTM = 3). Hence, data from breakthrough curves or concentration profiles
versus depth should be described with INPUTM equal to 1 and 2, respectively. It is not necessary
to specify the number of observations — the end of a data set should be marked by a line having
dummy zeroes. The maximum number of observed concentrations is determined by the parameter

MAXOB, which is defined at the top of the main program (the current default setting is 401).

Table 6.10 Block G - Observed Data for Inverse Problemt

Line Type Variable Description

1,2 - - Comment lines.

3 Integer INPUTM Input data code:
0 Z(M, TM, CH

1 TQ), CQ) for a fixed depth (breakthrough curve).
2 Z(D, C(D) for a fixed time (concentration vs. depth).
3 C), ZM), T() (Fixed format, 3F10.0, for CXTFIT version | data).

(a) INPUTM=0

4 - - Comment line.

5 Real Z(1) Position of the first observation.

5 Real T Time of the first observation.

5 Real c Value of the first observed concentration (dummy value if MIT=0).

6 Real Z(2) Position of the second observation.

6 Real T(2) Time of the second observation.

6 Real C2) Value of the second observed concentration (dummy value if MIT=0).
NOB+4 Real Z(NOB) Position of the NOB" observation.

NOB+4 Real TMOB) Time of the NOB™ observation.

NOB+4 Real C(NOB) Value of the NOB® observed concentration (dummy value if MIT=0).
NOB+5 Real Dummy Enter 0 to mark end of data set.

NOB+5 Real Dummy Enter 0 to mark end of data set.

NOB+5 Real Dummy Enter 0 to mark end of data set.
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Table 6.10. (continued)

Line Type Variable Description
() INPUTM=1
4 - - Comment line.

S Real DUMTZ Position of the breakthrough curve.
6 Real T() Time of the first observation.
6 Real c) Value of the first observed concentration (dummy value if MIT=0).
7 Real T(2) Time of the second observation.
7 Real C(2) Value of the second observed concentration (durnmy value if MIT=0).
NOB+5 Real TMOB) Time of the NOB™ observation.
NOB+5 Real C(NOB) Value of the NOB® observed concentration (dummy value if MIT=0).
NOB+6 Real Dummy Give 0 to mark end of data set.
NOB+6 Real Dummy Give 0 to mark end of data set.

c) INPUTM =2
4 Real DUMTZ Time of the solute profile.
5 - - Comment line.
6 Real Z(1) Posttion of the first observation.
6 Real c() Value of the first observed concentration (dummy value if MIT=0).
7 Real Z(2) Position of the second observation.
7 Real (6p)) Value of the second observed concentration (dummy value if MIT=0).
NOB+5 Real Z(NOB) Position of the NOB® observation.
NOB+5 Real C(NOB) Value of the NOB® observed concentration (dummy value if MIT=0).
NOB+6 Real Dummy Give 0 to mark end of data set.
NOB+6 Real Dummy Give O to mark end of data set.

d UTM = 3 (Fixed format, 3F10.0, fo version | data
4 - - Comment line.

S Real c(h Value of the first observed concentration (dummy value if MIT=0).

5 Real Z() Position of the first observation.

5 Real T Time of the first observation.

6 Real C) Value of the second observed concentration (dummy value if MIT=0).
6 Real Z(2) Position of the second observation.

6 Real T(2) Time of the second observation.
NOB+4 Real C(NOB) Value of the NOB* observed concentration (dummy value if MIT=0).
NOB+4 Real Z(NOB) Position of the NOB® observation.
NOB+4 Real TMOB) Time of the NOB® observation.
NOB+5 Real Dummy Give 0 to mark end of data set.
NOB+5 Real Dummy Give 0 to mark end of data set.
NOB+5 Real Dummy Give 0 to mark end of data set.

+ IfMIT=0 concentrations are calculated at specified Z(I) and T(I) using the initial parameter estimates.
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Block H . Position and Time for Direct Problem (Table 6.11)

The concentration is calculated for a user-defined grid system of times and positions. The
maximum number of concentrations that can’be caculated in this way is given by MAXOB (= 401).
If MPRINT = 1, the concentration is assumed to be given as a function of time, while for MPRINT

= 2 the concentration is given versus depth.

Table 6.11. Block H - Position and Time for Direct Problem

Line Type Variable Description

12 - Comment lines.

3 Integer NZ Number of output positions.

3 Real Dz Spatial increment for output.

3 Resdl Zl Initial value of output position.
3 Integer NT Number of output times.

3 Resdl DT Time increment for output.

3 Resdl Tl Initial value of output time.

3 Integer MPRINT Output print code:

1 Concentration vs. time.
2 Concentration vs. depth.
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6.3. Example Input and Output Files

We will present in this section some typical examples of direct and inverse problems. All input
and output files for the examples are provided on the distribution diskette.

6.3.1. Direct Problem

Tables 6.12 and 6.13 are input and output files for the deterministic nonequilibrium CDE (cf.
Figure 7.6a) Block H intheinput fileis used to specify the grid of times and positions for which
concentrations are to be calculated. The parameter NCASE, on the first line of the input file,
specifies the number of cases considered.  The output file shows the conditions for the simulation as
well as calculated resuilts for times and positions specified in Block H.  The concentration is given as
afunction of time if MPRINT = 1 (Block H), or as a function of position (distance) if MPRINT = 2.
To check the mass balance, zeroth time (MPRINT = 1) and depth (MPRINT = 2) moments are
calculated according to:

n-1
sum € +dT) = Z (C,+C,,)aT/2 (6.2)

i+l
i=1

n-1
Sum(C*dz)=) (C,+C,,)aZ/2 (6.3)

i=1

Table 6.12. Input File for Figure 7.6a
I

+*x¥ Bl OCK A: MODEL DESCRI PTI] QN %k dede ke kededrsede bkt ket ke ks sk dodrdede sk de b e b e e e
Fi g7-6a. Two-site CDE (A pha=0.08,f=0.7)
Effect of the fraction of equilibriumsite, f

| NVERSE MODE NREDU
0 2 1
MODC ZL
1 50
+++ BLOCK C TRANSPORT PARANETERS # v e d et o v o s e ok s e e e e ok e e S e e o ok e e e e ke e o e ke b e b o
Y, D R Bet a onmega Ml Mu2
20. 10. 5.0 0.44 0. 56 0.0 0.0
++ BLOCK D: BVP; MODB=0O ZERQ, =1 Dirac; =2 STEP: =3 A PULSE ***t*ws«xwisi
N(EDB =4 MULTI PLE; =5 EXPONENTI AL; =6 ARBI TRARY
1.0
*+« BLOCK E: VP, MODI=O ZERO, =I CONSTANT; =2 STEPW SE; =3 EXPONENTI AL +**
MoDI
0
w#++ BLOCK F: PVP; MODP=O ZERO, =I CONSTANT; =2 STEPW SE; =3 EXPONENTI AL **
MCDP
0
v«x BLOCK H POSI TION AND TIME FOR DI RECT PROBLEM * k4%t ssastsiokstvsinss
NZ Dz Zl NT DT Tl MPRI NT
1 1.0 50.0 101 0. 2. 0.0 1
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Table 6.13. Output File for Figure 7.6a

Je Je o v de e vde e e e ok W v e e e ok e vk e ole e oie e e Je e odr e s e ok e e o ol e e e e e e ke e ke e e e e e e e e e e ol e e e ok e e o e

CXTFIT VERSION 2.0 (1/2/95)
ANALYTICAL SOLUTIONS FOR ONE-DIMENSIONAL CDE
DIRECT PROBLEM

Fig7-6a. Two-site CDE (Alpha=0.08,£=0.7)
Effect of the fraction of equilibrium site, f

* & & ok & & ¥ & & %

DATA INPUT FILE: FIG7-6A.IN

* & £ &£ &£ £ £ £+ ¥ *

******************************i*i**********************************

MODEL DESCRI PTI ON

DETERM NI STI C NONEQUI LI BRI UM CDE ( MODE- 21
FLUX- AVERAGED CONCENTRATI ON
REAL TI ME (t), PCSI TI ON( x)
(D AND V ARE DI MENSI ONAL;
R beta, onmega, nu, AND gamma ARE DI MENSI ONLESS)
CHARACTERI STI C LENGTH = 50. 0000
FOR DI MENSI ONLESS PARAMETERS

INITIAL VALUES OF CCOEFFI Cl ENTS

NAME I NI TI AL VALUE
Veeeroonn . 2000E+02
Devevnns .1 000E+02
R... ... . 5000E+0I
beta..... . 4400E+00

mit...... . 0000E+00
m2...... . 0000E+00

BOUNDARY, | NI TI AL, AND PRCDUCTI ON CONDI TI ONS

DI RAC DELTA INPUT , MASS = 1. 0000
SOLUTE FREE | NI TIAL CONDI TI ON
NO PRODUCTI ON TERM

$ z= 50.0000 (FLUX CONC. VS. TIME)
$ Sum( C1*dT) = . 8207, Sum(C2*dT) = . 5062
$ TI ME C1 c2
. 00000E+00 . 00000E+00
. 5000 . 00000E+00 . 00000E+00
1.0000 . 00000E+00 . 00000E+00

49. 0000 .93484E-03 . 51409E- 02
49. 5000 .90217E- 03 . 49753E- 02
50. 0000 . 87064E- 03 . 48150E- 02
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6.3.2. Parameter Estimation

Tables 6.14 and 6.15 are input and output files for parameter optimization. Observed data
were fitted with the deterministic nonequilibrium two-region model (cf. Figure 7.9b). In the input
file, Block B specifies the conditions for the parameter estimation, while the observed data are given

in Block G.

Table 6.14. Input File for Figure 7.9b

1
> e BLOCK A: MODEL DESCRIPTION ¢ sde e sle e e ol e e e de de e e e de e e e e e e e e e e e W e e e e T e e e e e e e e e
Fig 6.9b:BORON EFFLUENT (Exp3-1,van Genuchten, 1974)
(Kd=1.04, unit, cm, d, micro g) (CXTFIT,EX.4A,Fig.5)

INVERSE MODE NREDU
1 2 2
MODC ZL
1 30.0
e % % BLOCK B: INVERSE PROBLEM e e e e de e e e e e e e de e de e de de e Je de ke de de de ek dr ke e ke i e ke K de kW e ek e e e
MIT IIMT MASS
50 0 0
MNEQ MDEG
0 0
e 4 e BLOCK C: TRANSPORT PAMTERS e e e e e de de e e de de e e de e e e e dr e e de de Yk e e e de e de W de e de Y I e ke e
v D R Beta omega Mul Mu2
38.5 15.5 3.9 0.5 0.2 0. 0.
0 0 0 1 1 0 0

**+* BLOCK D: BVP; MODB=0 ZERO; =1 DIRAC; =2 STEP; =3 A PULSE | ***¥**srdhix
MODB (Reduced Conc.& time) =4 MULTIPLE; =5 EXPCONENTIAL; =6 ARBITRARY

3
1.0 6.494
*+* BLOCK E: IVP; MODI=0 ZERO; =1 CONSTANT; =2 STEPWISE; =3 EXPONENTIAL *+*
MODI
0
*++* BLOCK F: PVP; MODP=0 ZERO; =1 CONSTANT; =2 STEPWISE; =3 EXPONENTIAL **
MODP
0

%+ BLOCK G: DATA FOR AN INVERSE PROBLEM % % s b s o ok e ok e oo ok o o e o ok de e e e ok o e e e e e
INPUTM =0; 2,T,C =1; T,C FOR SAME Z =2; Z,C FOR SAME T
1

1.0

TIME CONC (Give "0 0 O™ after last data set.)
1.80 0.015

1.95 0.075

17.00 0.040

18.50 0.029

20.00 0.025

0 0
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The first part of the output file gives the conditions for the simulation and parameter
estimation. The goodness of fit is described with the coefficient of determination, 7, for the

regression of observed versus fitted concentrations:

N
_£\2
E_(C.- £) ] 5502

ri=1-421 1-

N _ N -
Y, -C) Y (C, -CY
i=1 i=1

6.4)

where C, and f are observed and fitted data, respectively, and C is the mean of all N observed
concentrations. A value for 7 close to unity indicates a good fit whereas values close to zero indicate
a relatively poor description of the observed data by the selected model. The reliability of the
parameter estimation may also be assessed with the parameter covariance matrix [Kool and Parker,
1988]. Once an acceptable minimum of the objective function (SSQ) has been found, a first-order

approximation of the parameter covariance matrix is obtained from

C=s52A"" (6.5)
where s is an estimate of the variance due to error for M fitted parameters, i.e.,
SSQ
S =
VoM (6.6)

and A is given by (5.22). The standard error of the parameter b, (denoted as S.E. COEFF. in the
output file) is given by (C;)"? while the T-value is given by b /(C ). The values for 7 and the
standard error provide relative and absolute measures of deviations around the mean parameter value;
a high value for T'is desirable. The covariance matrix, a, for the fitted parameters is obtained by

simply dividing the elements of C by the parameter standard error:
Ci!'

% = C)2(C )2
(C)™(C)

In addition, the boundaries of the 95 % confidence region are calculated using the appropriate value

6.7

of Student's # distribution:
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bj,min = b,;ﬁ: ~Uy_a0.975 (ij)m (6.8)

b

b it + Iv-a0975 (Cj;)m (6_9)

J,max =

where b4, is the fitted parameter value, and y,9.97s isthe value of thet distribution for confidence
level 0.95 with N - M degrees of freedom.

It should be noted that since (6.5), (6.8), and (6.9) are based on linear regression analyss,
they hold only approximately for the nonlinear analysis as was discussed by Kool und Parker [ 1988].
However, (6.8) and (6.9) will yield reasonable approximations for individual parameter confidence
intervals if no constraints are used and b4, represents the true global minimum of the objective

function.

Table 6.15. Output File for Figure 7.9b

**************************************************+****************

CXTFIT VERSION 2.0 (1/2/95)
ANALYTICAL SOLUTIONS FOR ONE~DIMENSIONAL CDE
NON-LINEAR LEAST-SQUARES ANALYSIS

Fig 6.9b:BORON EFFLUENT (Exp3-1,van Genuchten,1974)
(Kd=1.04, unit, cm, d, micro g) (CXTFIT,EX.4A,Fig.5)

DATA INPUT FILE: FIG7-9B.IN

& o & o+ A+ A
LR SR I

*********************************i*********************************

MCDEL DESCRI PTI ON

DETERM NI STI C NONEQUI LI BRI UM CDE (MODE=2)
FLUX- AVERAGED ~ CONCENTRATI ON
REDUCED TIME (T), POSI TION(2)
(ALL PARANETERS EXCEPT D AND V ARE DI MENS| ONLESS)
CHARACTERI STIC LENGTH =  30.0000
FOR DI MENSI ONLESS PARANETERS

INITIAL VALUES OF COEFFI Cl ENTS

NAME I'NI TI AL VALUE FI TTI NG
Vieeooo. . 3850E+02 N
Devevnns . 1550E+02 N
Revovnn.. . 3900E+01 N
beta..... . 5000E+00 Y
onega. . .. . 2000E+00 Y
mul...... . 0000E+00 N
m2...... . 0000E+00 N
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Table 6.15. (continued)

BOUNDARY, INITIAL, AND PRODUCTION CONDITIONS

SINGLE PULSE OF CONC. = 1.0000 & DURATION = 6.4940
SOLUTE FREE INITIAL CONDITION
NO PRODUCTION TERM

PARAMETER ESTIMATION MODE

MAXIMUM NUMBER OF ITERATIONS = 50
TWO-REGION PHYSICAL NONEQUILIBRIUM MODEL

ITER SSQ beta. omega
0 .1563E+01 .500E+00 .200E+00
1 .1628E+00 .554E+00 .564E+00
2 .8561E-01 .571E+00 .712E+00
3 .8460E-01 .576E+00 .707E+00
4 .8459E-01 .S578E+00 .700E+00
5 .8459E-01 .S578E+00 .700E+00

COVARIANCE MATRIX FOR FITTED PARAMETERS

beta. omega
beta. 1.000
omega -.756 1.000

RSQUARE FOR REGRESSION OF OBSERVED VS PREDICTED = .96370540
(COEFFICIENT OF DETERMINATION)

NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS

95% CONFIDENCE LIMITS

NAME VALUE S.E.COEFF. T-VALUE LOWER UPPER
beta. .5780E+00 .8401E-01 .6880E+01 .4059E+00 .7501E+00
omega .69399E+00 .8401E~01 .8331E+01 .5278E+00 .8720E+00

-ORDERED BY COMPUTER INPUT -

CONCENTRATION RESI-

NO DISTANCE TIME OBS FITTED DUAL
1 1.0000 1.8000 .0150 .0594 -.0444
2 1.0000 1.9500 .0750 .1253 -.0503
3 1.0000 2.1000 .1700 .2120 -.0420
4 1.0000 2.2500 .2650 .3050 ~-.0400
5 1.0000 2.4000 .3400 .3902 -.0502
6 1.0000 2.6000 .4300 .4794 ~.0494
7 1.0000 2.8500 .5350 .5523 -.0173
25 1.0000 12.7000 .1330 .1356 -.0026
26 1.0000 14.0000 .0900 .0912 -.0012
27 1.0000 15.5000 .0540 .0573 -.0033
28 1.0000 17.0000 .0400 .0358 .0042
29 1.0000 18.5000 .0290 .0222 .0068
30 1.0000 20.0000 .0250 .0137 L0113
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6.4. CXTFIT 1.0

This section outlines the difference in input format for CXTFIT 2.0 and its predecessor,
version 1 [Parker and van Genuchten, 1984]. This information is included to quickly familiarize
users of the prior CXTHT program with the current verson. All functions in CXTHT 1 .0 are aso
included in version 2, except for parameter estimation of the constant production term, vy, in the
equilibrium CDE (MODE = 1,2 in version 1). Many examples were tested using the two versions;
identical results were obtained in mogt cases, while a times the parameter optimization was dightly
better for CXTFIT 2.0. Changesin the input structure are outlined below.

Model Type and Concentration Mode

Inverson 1, the parameter MODE specified model type and concentration mode. In version
2, the parameters MODE and MODC in Block A specify the model type and the concentration mode,
respectively. The resident concentration in version 1 isidentical to the resident concentration for a
third-type inlet condition in version 2 (MODC = 3). Field-scale flux averaged concentrationsin
version 1 are specified by MODC = 2 in CXTFIT 2.0 (cf. Table 6.1).

Estimation of Solute Application Time
The pulse duration was estimated as a transport parameter in version 1. In this version, the
user also needsto set MASS=1in Block B and INDEX = 1 for the application time in Block D.

Degradation Coefficient

The degradation coefficient x for the deterministic CDE was aways dimensional in version
1. As explained in Block C, # may be dimensiona or dimensionless in verson 2, depending upon the
value of NREDU in Block A.
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Characteristic Length

The characteristic length L for nondimensional parametersin version 1 was defined internally
as the maximum value of the independent varidble, x. Instead, a value for L now has to be entered
by the user in Block A. This modification alows greater flexibility, while nondimensiona parameters,
such as w, can aso be made independent from the maximum depth for a particular set of
observations.

Stochastic Model with Random v

The stochastic model in version 1 consisted of a stream tube model with random pore-water
velocity, v. Additional stochastic parameters can be used in verson 2 as discussed in Chapter 4. The
case of only astochastic v can be modeled in CXTFIT 2.0 by setting the other standard deviations
of al other parameters to zero.

Constant Local-Scale Dispersivity

In version 1 only a constant dispersivity, 4, could be used (see (4.25)). To do thisin version
2, identical initial estimates for g, and g, (MODE = 3) should be entered to keep 4 constant during
the parameter estimation in process. The input parameter is <D>.

Stochastic Model for Pulse Input of Constant Duration
A constant application time for the stochastic model (MODE = 5,6 in version 1) can now be
given by setting MASSST = 0 for MODB =3 in Block D (see Figure 4.4).

Stochastic Model with Constant Mass

The stochastic model with constant mass (MODE =78 in version 1) can be evaluated in
version 2 by setting MASSST = 1 for MODB = 3in Block D.

86



7. EXAMPLE PROBLEMS

This chapter contains several examples to illustrate the application of CXTFIT 2.0 to different
trangport scenarios. Both solutions of the direct and the inverse problem will be discussed for severa
types of boundary value (BVP), initial value (IVP), and production value (PVP) problems. A third-
type inlet condition is used in al example problems, while concentrations in the examples are dways
normalized with respect to the input concentration or initial concentration (Tables 2.1 and 3.1). The
input and output files for each example can be found on the distribution diskette.

7.1. Deterministic Equilibrium CDE (MODE =1)
7.1.1. Direct Problem

The first two examples deal with the solution of the direct problem for the equilibrium CDE.
Figure 7.1 illustrates the effect of the first-order decay constant g, as given by (2.9, on solute

2.0 . . i

1.5

o 1.0

0.5

0.0

0 20 40 60 80 100
X (cm)

Fig. 7.1. Effect of the first-order decay congtant, g, on calculated C,-profiles.
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distributions. The resident concentration was calculated 7.5 d after applying asingle pulseinput at
t = 0 with duration #, = 5 d to a solute-free soil profile assumingv =25cm d*, D=37.5cm*d™}, R
= 3, and a constant rate of production y = 0.5 mg kg-' d"* [van Genuchten, 1981a]. Notice that
when # increases, the concentration decreases as a result of the rise in degradation. Concentrations
were evaluated according to (2.34) for g =0 d* while (2.33) was used for u>0d™.

Differences between resident (C,) and flux-averaged (G) concentrations for the BVP have
been discussed extensively by severa authors [cf. Kretand Zuber, 1978; Jury and Roth, 1990; van
Genuchten and Parker, 1984b]. We will illustrate the differences in concentration mode for the IVP
[Toride et al., 1993b]. Figure 7.2 shows C, and C, as a function of relative distance, Z, at
dimensonless time T =0.05 for two values of P when solute-free water is gpplied to a soil having a
stepwise initial resident distribution asindicated by the dashed line. Dispersive transport dominates
convective transport when P = 2, causing considerable spreading to occur in both the upstream and
downstream directions (Figure 7.2a). Notice that at this small time (T = 0.05), C; is negative for
Z=0.5, and greater than unity (the initial resident concentration) for Z= 1. These somewhat odd
results are a direct result of the definition of C' according to (2.13). Since the solute flux, J, and the
water flux, J,, are vectors, C, becomes negative when the directions of these two fluxes are opposite.
The negative C; near the surface is the result of an upward dispersive solute flux in spite of a
downward convective solute flux. Similarly, C; is greater than C, if the gradient of C  becomes
negative. For relatively large negative gradients such as those in Figure 7.2 around Z = 1, C,can
become greater than the initial resident concentration C(Z,0). Notice from Figure 7.2b that the
differences between C,and C, become smaller for an increased Peclet number, P.
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Fig. 7.2. Flux and resident concentrations versus depth at T=0.05 for a solute-free input
to a stepwise initial distribution: (a) P = 2, and (b) P =10.

7.1.2. Parameter Estimation
Figure 7.3 presents breakthrough curves (BTCs) measured by Shiozawa [1994, personal

communication] with four-electrode EC sensors at three different depths as a result of: (a) continuous
application of a 0.01 M NaCl solution to an initially solute-free saturated sand (8 = 0.3), and (b)
leaching with solute free water during unsaturated condition (6 = 0.12). The observations were

analyzed in terms of the equilibrium CDE with CXTFIT 2.0 assuming a resident mode (MODC = 3),
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yielding estimates of the pore-water velocity, v, and the dispersion coefficient, D. The results are
given in Table 7.1. The fitted v and D for each depth were almost identical. These results show that
the CDE is an appropriate model for describing transport in this column. Note from the data in Table
7.1 that the dispersivity, A (= D/v), is smaller for the saturated soil than for the unsaturated soil.
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. 0.6 B
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] (b)6=0.12 |
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0.4 -
0.2 4 -
] 9, ~l ® o ]
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Fig. 7.3. Experimental and fitted breakthrough curves for (a) saturated (€= 0.3)
and (b) unsaturated (6= 0.12) sand.
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Table 7.1. Pore-Water Velocity, v, Dispersion Coeffkient, D, and
Dispersivity, |, Obtained by Fitting the Data of Figure 7.2

Depth v D A
cm

cmd? cm?® d! cm

(@) Saturated (6= 0.3)

11 2.45 0.154 0.063
17 251 0.126 0.050
23 251 0.110 0.044

(b) Unsaturated (6= 0.12)

11 0.258 0.0357 0.14
17 0.254 0.0393 0.15
23 0.249 0.0429 0.17

The input mass can be used as a fitting parameter by setting MASS = 1 for a Dirac delta input
and a pulse input. For a pulse input either the application time or the input concentration can be
estimated. Figure 7.4 shows observations and the breakthrough curve obtained by fitting the duration
of the application for a pulse input, #,, in addition to v and D. The concentration was measured with
aTDR probe a a depth of 10 cm for a pulse application of KCl solution to an undisturbed sandy soil
column [Mallants et al., 1994]. The fitted parametersarev = 2.34 cmd™, D = 12.8 cm*d™}, and ¢,
= 0.8 h. We again note that mass baance errors are likely to have an adverse effect on the estimation

of al transport parameters.
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t (h)
Fig. 7.4. Observed concentrations for a pulse input and
breakthrough curve obtained by fitting v, D, and ¢,.

7.2. Deterministic Nonequilibrium CDE (MODE = 2)

7.2.1. Direct Problem

The first two examples below are included to demonstrate differences between the one-site
and two-site nonequilibrium models. The one-site model is a special case of the two-site model (cf.
Section 3.1.1); it is obtained by assuming that the fraction of equilibrium adsorption sites is zero (f
= 0). The kinetic rate coefficient, , is then the only remaining nonequilibrium parameter in the
dimensional one-site nonequilibrium model.

Figure 7.5 shows the effect of a on the BTCs in terms of the flux-averaged concentration at
x =50 cm, as the result of applying a Dirac delta input function to an initially solute free soil. Other
parameters are v=20 cmd}, D=10cm?d™!, and R = 5. Note that #= 0.2, regardless of the values
for a, and that the solution of the equilibrium CDE (MODE = 1) was used to predict the BTC for
a-=. The effect of @ may be interpreted in terms of the adsorption time scale, 1/«; a smaller «
suggests slower adsorption. For equilibrium adsorption, the solute peak occurs at ¢ = 12.5 d which

corresponds closely to the value for Rx/v. As @ decreases, solute spreading increases. Some of the
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solutes are not readily adsorbed and move fairly quickly through the soil, while the remaining solutes

move much slower since, once adsorbed, solutes will move back into the solution phase at a relatively

slow pace. A concentration peak appears at #=2.5 d as a decreases (<0.2 d"'). In the extreme case

of =0 (i.e., no adsorption), solute transport is described with the equilibrium CDE for nonreactive

solute (R = 1).

0.6 T T T 1 v 1 v
A One-site model (f = 0)
o =0.08d"
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- ] .
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'""‘,""“‘:'—':-"-'-—-—-—-—-:.:';Z..‘..—..—.....
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t (d)

Fig. 7.5. Breakthrough curves at x = 50 cm for four values of «
as calculated with the one-site nonequilibrium model.

Figure 7.6 presents BTCs according to the two-site nonequilibrium CDE for four values of

f using the same condition as in Figure 7.5. The results for the one-site model (f = 0) are identical

to those given in Figure 7.5. For f=1 the problem is again reduced to the equilibrium CDE with R

= 5: this case is identical to the BTC for @~ in Figure 7.5. Notice that the concentration peak

appears earlier as f decreases, while at the same time the concentration peak increases.
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Fig. 7.6. Breakthrough curves according to the two-site nonequilibrium CDE
for four values of fassuming: (a) =0.08 d! and (b) 2=0.2d™".

The additional nonequilibrium parameter in the two-site model, f, gives more flexibility in the
estimation procedure than the one-site model. However, if R needs to be estimated in addition to the
nonequilibrium parameters, « and £, it is not always possible to find a unique solution to the inverse
problem. As an example, Figure 7.7a presents two breakthrough curves calculated with different
values for R, «, and /. The solid line in Figure 7.7a is identical to the curves for f= 0.3 in Figure 7.6a.
If we neglect the effects of dispersion (i.e., P~«) and kinetic adsorption (i.e., @ = 0) in equation (3.3),
the product AR is equivalent to the number of pore volumes, 7, at which the solute initially appears

in the effluent [Parker and van Genuchten, 1984b]. We used R =10 and /= 0.135 to calculate the
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BTC given by the dashed line in Figure 7.7a — this curve has the same value of 0.22 for PR as the
solid curve. Furthermore, we can adjust « to obtain the same peak concentration and an almost
identical BTC with some minor differences in the tailing end of the BTC. F igure 7.7a implies that,

in general, at least R (i.e., the distribution coefficient, X,) should be estimated independently.

0.4 —
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S 0.2 Re§ a=008d' m03 |
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0.0 . ’
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Fig. 7.7. Breakthrough curves for AR = 0.22, using different sets of R, @, and f; calculated with the
two-site nonequilibrium CDE for: (a) Dirac delta input, and (b) pulse input of 5d.
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Figure 7.7b presents two BTCs for a pulse input of 5 days using the same set of parameters
asin Figure 7.7a. Differences between the BTCs predicted with the two different data sets are more
pronounced for the pulse input than for the Dirac input. The enhanced tailing for the pulse input will
likely somewhat improve the estimated transport parametersin the two-site model.

Since the two-region nonequilibrium mode is mathematically identical to the two-site model
(cf. Section 3.1.3), we may conclude from the above that different sets of R, &, and 8, also may lead
to nearly identical concentration profiles. For reactive solutes, the fraction, £, of adsorption sitesin
contact with the mobile liquid phase will cause additional uncertainty in the parameter estimation.
When the BTCs for reactive solutes are analyzed in terms of the two-region model, it is best to
estimate 8, from data for a nonreactive tracer (see also Figure 7.9).

The last example involving a direct problem concerns deterministic nonequilibrium  transport
as described by an initid vaue problem (IVP). Figure 7.8 shows equilibrium (C,) and nonequilibrium
(C)) resident concentration profiles a T = 1.0 for three vaues of the partitioning coefficient 4 The
example involves the application of a solute-free solution to a soil with a stepwise initial solute
distribution (dashed linein Fig. 7.8), assuming P =10, R=2, w =1, and g, = 4, = 0.2. Figure 7.8
shows that solutes are transported more owly when Bis relatively small, i.e, when a reatively large
amount of solute resides in the nonequilibrium phase. Hence, leaching is not as effective when S is
small. Notice aso that the discontinuity in the nonequiiibrium concentration, C,, persists much longer
when Fis smal. The discontinuity persists because solute removal and subsequent leaching from the
nonequilibrium phase can only occur indirectly through the equilibrium phase after the solute has
kinetically desorbed from the adsorbed to the solution phase (the one- or two-sSite adsorption models),
or has diised from immobile to mobile water (the two-region model). The nonequilibrium profiles
cosdy resemble the equilibrium when £ is large because of increased opportunity for the relatively

smal amount of solute in the nonequilibrium phase to move to the equilibrium phase.
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Fig. 7.8. Calculated concentration versus depth for an IVP using:

(a) B=0.1, (b) 8= 0.5, and (c) B=0.9.
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7.2.2. Parameter Estimation

Several examples below illustrate the use of CXTFIT 2.0 to estimate parameters involving the
nonequilibrium deterministic model. The first example deals with two-region nonequilibrium
transport of tritiated water through a Glendale clay loam Experiment 3-2 of van Genuchten, 1974].
A *H,0 pulse of duration = 3.102 was applied to a 30-cm long column, and the BTC was
determined from the effluent. The volumetric water content, €, was 0.454 while the pore-water
velocity, v, was equal to 37.5 cm d'. Assuming that R = 1 for *H,0, we only have to estimate £ (=
8,/ 6) and @ from the measured BTC. Figure 7.9a compares the observed and fitted BTCs. The
number of pore volumes, T, was used as the dimensonless time in this example (NREDU = 2). We
emphasizethat v (= v,, 8,/6) and D (= D, §,/6) are used as the unknown input parameters, instead
of v,,and D ,, which appear in the two-region physica nonequilibrium model (Table 6.7). The fitted
values were D = 15.5 cm*d™!, §,/8= 0.822, and w= 0.85. These values correspond to v, = 45.6
cmd, D, =189 cm*d™!, and @= 0.48 d™*.

A pulse of boron tracer was aso applied for 7, = 6.494 pore volumes to the same column as
used in Figure 7.9a[Exp. 3 of van Genuchten, 1974]. The estimated parameters werev = 38.5cm
d'and R=39(K,=1.04g cn?’, p, = 1.222 g cm™3, and 8= 0.445). We assumed that D and 6,/8
are identical for boron and *H,0 (Figure 7.9a). Figure 7.9b shows the observed and fitted BTCs with
parameters §=0.578 and w = 0.70 (a= 0.40 d""). Substituting 8,/8= 0.822, as obtained from the
*H,0 BTC, into the expression for f (cf. Table 3.1) yields f = 0.49 for the fraction of sorption sites
in contact with the mobile phase.

The boron data are the same as those shown in Figure 5 of the previous CXTFIT manual
[Parker and van Genuchten, 1984b] when four parameters (D, R, S, and w) were estimated. Table
7.2 shows the effect of having different initial estimates and number of unknown parameter on the
optimization of the boron BTC given in Figure 7-9b — smilar information was previoudy shown
in Table 3 of Parker and van Genuchten [1984b]. Two different sets of initial estimates were used
to estimate either two (i.e., £ and w, with D obtained by fitting the *H,0 BTC) or three (i.e., D, £,
and w) parameters. For the two-parameter estimation, # and @ converged to amost identica results
regardiess of the initia estimates. If D was also optimized, the final results depended greatly on the

initial estimates. The results for the three-parameter estimation in Table 7.2 were quite dissimilar
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athough only the initial value for g was different in the two examples.  Since the product AR
determines the number of pore-volumes, T, at which the tracer initially appears in the effluent, it is
important to provide a reasonable initial estimate for fR. If R isfitted aswell — in additionto D,
B, and w such asin Table 3 in Parker and van Genuchten [ 1984b] — the likelihood that the
optimization does not converge to the correct solution will increase. Figure 7.7 suggests that
different parameter sets can yield very smilar curves. This occurs when the response surface (i.e.,
the objective function, SSQ(b)) has a flat surface near the global minimum or when multiple local

minima exis.
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Fig 7.9. Breskthrough curves for a Glendale clay loam described by the two-region
physical nonequilibrium mode for nonreactive *H,0 and reactive boron.

99



Table 7.2. Fitted Parameter Values and the Coefficient of Determination,
P, for the Optimization of the boron BTC for
Different Sets of Initial Estimates

Example v D R B w s

() Two parameter (8, w) estimation

Initial values 385 155 39 05 0.2
Fina values fixed fixed fixed 0.58 0.70 0.970
Initial values 38.5 155 39 0.1 0.2
Fina vaues fixed fixed fixed 0.58 0.70 0.970

(b) Three parameter (D, f,w) estimation

Initial values 385 155 3.9 0.5 0.2
Fina vaues fixed 50.2 fixed 0.647 0.46 0.978
Initial values 385 155 3.9 0.1 0.2
Final valuest fixed 303.6 fixed 0.9999 100.0 0.942

t B and w reached the internal maximum constraints #=0.9999 and w=100. The estimate for D
is dmost identica to that obtained by fitting the equilibrium CDE to the observed data.

In most cases # and w will be obtained from a simultaneously fit. Rao et al. [ 1980], on the
other hand, attempted to independently predict @ from the aggregate size for a medium consisting
of uniform spherical aggregates. Nonequilibrium transport of a reactive solutes is probably best
studied with experiments that observe the movement of reactive and nonreactive solutes (cf. Figure
7.9). Asafirst approximation, we can then assume that such parameters as D and 8, are the same

for both types of solute.
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7.3. Stochastic CDE (MODE:>3)

7.3.1. Nonreactive Solute Transport

Direct Problem
First we consider equilibrium transport of a nonreactive solute (R = 1) at the local scale as

discussed in Section (4.2). Figure 7.10 shows the mean, ¢, = <c,>, and the variance according to
(4.20) as a function of depth at £ =3 d for three values of g,, as result of a 2-d solute application to

a solute-free soil assuming <v>=20 cm d™! and <D>=20 cm? d"! with a constant dispersivity (g, =a},).
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Fig. 7.10. The effect of the variability in the pore-water velocity, v, on:
(a) the field-scale resident concentration (&,) profile, and (b) the
distribution of the variance for c, in the horizontal plane.
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Solute spreading in theé-profile increased with g, asindicated in Figure 7.10a.  Figure 7.1 Ob
shows that variations in the local-scale ¢, aso increased with g, thereby suggesting that a more
heterogeneous solute distribution will occur in the horizontal plane. Because flow and transport
become increasingly heterogeneous as g, increases, more observations are needed to reiably estimate
field-scale concentrations. Note that the variance profiles have a double peak (Figure 7. 10b). The
variance has arelative minimum around x = 30 cm where the highest concentration occurs (Figure
7.10a). Similar bimoda behavior of the variance was observed numericaly by Burr et al. [ 1994] for
trangport in a three-dimensiona heterogeneous medium. The variance also depends on the duration
of the solute application time. As the application time increases, continued solute injection will
counteract the randomness due to variations in transport properties between stream tubes.

Figure 7.11 presents BTCs for three types of field-scale concentrations (¢,, ¢, and <c>) as a
result of a Dirac input assuming <v>=50cmd™, <D> =200 cm*d™*,and g, =g, = 0.5. TheBTC
for ¢has the highest peak a a relatively early time, while ¢, and <¢> show similar distributions. The
local-scale concentration mode apparently has little influence on the field-scale average when the
velocity is stochadtic. A relatively large value for <D> was selected to demonstrate the difference
between ¢, and <c>. These two concentrations would be very similar for smaller <D> (e.g., 20 cm?
dy.
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Fig. 7.11. Breskthrough curves for three types of field-scae concentration modes.
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The mean breakthrough time and the amount of spreading are smaller for €, than for ¢, or <c>.
All concentrations are almost identical at # = 2 d, which is the mean breakthrough time for &, [Toride
and Leij, 1995a). Solutes will only reach x =100 cm prior to ¢ = 2 d if it travels in stream tubes with
a velocity greater than the ensemble average, <v>. The velocity-weighted concentration, &, should
therefore be greater than the ensemble-averaged concentrations, ¢, and <c>, during the initial stages
of the displacement process (f <2 d). On the other hand, ¢,becomes less than &, or <c/> at later times
(t>2d).

Parameter Estimation

There are very few data sets that allow solution of the inverse problem for the stream tube
model. The same data as those of Figure 7a in the CXTFIT manual by Parker and van Genuchten
[1984b] were used to demonstrate parameter estimation for the stochastic stream tube model. The
example pertains to resident concentrations of a 0.64-ha field to which a bromide pulse was applied
for 1.69 d followed by leaching with solute-free water [Jury et al., 1982]. The stream tube model

can be adapted for transient flow conditions as shown by Parker and van Genuchten [1984b, p. 41].
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Figure 7.12. Observed and fitted values of ¢, for field-scale transport
of bromide (after Jury et al. [1982]).
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The dispersivity, A, was assumed to be constant with g, = 1; the following parameters should
hence be used in the input file: MODE = 3 and o, = g, (cf. Eq. (4.25) and Table 6.7). Solution of
the inverse problem yielded: <v>=30.5mmd™}, <D>=2.5mm’d"’, and 0,= 0.8 mm d", and 0, =
0.8 mm?® d’!. The estimates for <v> and o, are identical to those by Parker and van Genuchten
[1984b], whereas <D> was about ten times smaller. Local dispersion typically has a minor effect on
the field-scale concentration (cf. Parker and van Genuchten [1984b] and Toride and Leij [1995a])).

7.3.2. Reactive Solute Transport

Direct Problem

In addition to the variability in v and D, we may also need to consider the variability in the
distribution coefficient, K, and the nonequilibrium rate parameter, &, when modeling the field-scale
transport of reactive solutes. The effect of a stochastic v or X on field-scale concentrations is first
demonstrated for equilibrium transport using MODE = 3. The field-scale resident concentration, ¢,
at #=5 d resulting from a Dirac delta input at ¢ = 0, is plotted versus depth in'Figure 7.13 for either
perfect or no correlation between v and K, Values of the transport parameters are: <v> =50 cm d”/,

D=20cm*d}, <K,>=1g"'cem’, 6,;,=0.2g" cm®, <R>=5, and p,/6=4 g cm™>.
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Fig. 7.13. Effect of the correlation between v and K, on field-scale
resident concentration (¢,) profiles.
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A negative correlation between v and K, implies that R and v are inversely related; such a
correlation causes additional spreading in the field-scale concentration. The effect of variability in
K, on solute spreading, as observed from the results of the relatively simple stream tube model, is
quite similar as observed using more general stochastic approaches [e.g., Bosma et al., 1993].

If solutes are not adsorbed instantaneously, the field-scale concentration may be predicted with
the nonequilibrium transport models defined by (4.1) and (4.2). In the next example we assume that
the nonequilibrium rate coefficient, «; is deterministic (MODE = 4). Figure 7.14 shows the field-scale
resident (£,) and total resident (¢;) concentrations versus depth at #= 1 d. The stochastic parameters
are v and X, with g, = -1, while the deterministic rate parameter (actually the dimensionless
parameter, o) is given by: (a) =2.5d", (b) 2=0.5d"!, and (c) #=0.1d". All other parameters
were taken to be the same as those used for Figure 7.13. Differences between &, and &, reflect the
amount of adsorbed solutes. As a decreases, some of the solute will not be readily adsorbed and
hence is transported downgradient relatively quickly. On the other hand, a relatively large fraction

of the solutes will be adsorbed near the surface in case of an increased a.
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Fig. 7.14. Nonequilibrium field-scale transport for negatively correlated v and K.
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Parameter Estimation

As for nonreactive solutes, there is a general lack of suitable data for estimating transport
parameters in the stream tube model for reactive solutes. We will therefore use a hypothetical data
set to illustrate the solution of the inverse problem in CXTFIT 2.0 for stochastic transport of reactive
solutes. Furthermore, the solution of the inverse problem is far more complicated since both the
variability in v or D as well as & or K, [Robin et al., 1991] may have to be considered. Figure 7.15
shows predicted resident concentrations, &, after a solute pulse is applied for one day; the following
model parameters were used: <v>=50cmd™, D=20cm*d}, <K,>=1g"'cm’®, g, = 0.3 g'* cm’,
<R>=5, p,/@=4gcm> and p,g; = -0.8 (MODE = 3). The standard deviation, o, , and the
coefficient of correlation between v and X, , p,«,, were fitted to the hypothetical data while keeping
<v>, o, and <K > constant at the above values. The latter parameters could also have been estimated
from data for a nonreactive solute. The program converged to the correct parameter values, i.e.,
those that were used to generate the hypothetical data set, after just a few iterations. Unfortunately,
such good results are unlikely for most practical cases since the experimental conditions in most
heterogeneous fields will not conform exactly to the assumptions made for the stream tube model (cf.

Chapter 4).
0.1 5 T l L " T ' LE

0 50 100 150 200
x (cm)

Fig. 7.15. Estimation of gy, and p,,, by fitting the solution for the stream tube model
to hypothetical data, generated with a stochastic v and K,
assuming that <v>, g,, and <K > are known.
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8. SUMMARY AND CONCLUSIONS

The CXTHT 2.0 program provides a convenient way of solving direct and inverse problems
for one-dimensional solute transport during steady water flow. Both equilibrium and two-site/two-
region type nonequilibrium transport models can be implemented — the transport equation contains
terms for convection, dispersion, linear adsorption, zero-order production, and first-order decay.
Andyticd solutions for determinigtic transport were given for a large number of boundary, initid, and
production value problems. CXTFIT 2.0 aso includes a stochastic transport model that views the
field as an assembly of deterministic flow and transport paths; these are referred to as stream tubes
for one-dimensional flow and transport. Transport in each stream tube is modeled deterministically
with the convection-dispersion equation using as random parameters v and either D, X, or a. The
random parameters are described with a bivariate lognormal probability density function. Solute
concentrations across the field, in either the resident or flux-averaged mode, were obtained by
averaging the concentrations of individual stream tubes.

Various transport parameters in the deterministic and stochastic transport models can be
estimated by CXTFIT 2.0 by fitting the pertinent analytical solution to solute (tracer) concentrations
obtained in the laboratory or field. As discussed in Chapter 5, the estimation procedure uses a
nonlinear |east-squares inversion method according to Marquardt [ 1963]. While the procedure has
been shown to work for many examples, users should remain cognizant of potential problems
involving convergence and parameter uniqueness. This is especialy true when the stream tube mode
Is used for optimizing data obtained across the field. Chapter 6 contains a detailed and schematic
outline of the settings and variables for each solution of the direct or inverse problem in CXTHT 2.0.
The use of the program is further illustrated in Chapter 7, which contains a variety examples
regarding the prediction of solute profiles and the analysis of experimental data to estimate
parameters in deterministic and stochastic solute transport models.
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APPENDIX: LIST OF SIGNIFICANT PROGRAM VARIABLES

Table A 1. List of Integer Variables

ICHEB

ILMT
ISKIP

INTM

INVERSE
KP

MIT
MASS
MASSST
MAXTRY

MAXOB
MCON

MCORR

MDEG
MM

MNEQ
MODB
MODC
MODD

MODE
MOD1
MODJH

MODK

MODP
MODP 1

Integration code for Gauss Chebyshev. |f ICHEB =1, the number of integration points willincrease
until the result satisfies the error criterion (default is ICHEB = 1 in the subroutine CONSTI, blank
common).

Parameter constraint code (Table 6.4).

Calculation control code for the evaluation of the integral limits; ISKIP = 0 to evaluate the limits; = 1 to
skip evaluation (the subroutine Model, MODAT common).

Calculation control code for the numerical integration for the stochastic CDE in subroutine STOCDE
(INTM =1 for log-transformed Romberg; = 2 for log-transformed Gauss-Chebyshev, default is INTM
=1).

Calculation control code for direct and inverse problems (Table 6.3, MODAT common).

File unit number.

Maximum number of iterations (Table 6.4, MODAT common).

Total mass estimation code (Table 6.4, MODAT common).

Mass distribution index for the stochastic CDE (MODB = 1,3 in Table 6.7, BOUND common).
Maximum number of trials to find new parameter values without a decrease in the SSQ (It is suggested
that MAXTRY bein the range10 to 50; smaller values may reduce the run time but no convergent
solution may be found. Default is 50 in the subroutine CONST1).

Maximum number of data (Main program).

Calculation control code for concentrations (MCON = 0, Calculate equilibrium and nonequilibrium
concentrations; =1 only equilibrium; = 3 only nonequilibrium, blank common).

Index for stochastic v and i defined in subroutine MODEL ; MCORR = - 1 for perfect negative
correlation between v and 7, = O for uncorrdlated v and s, = 1 for perfect positive correlation between
v and s, = 2 for other corrdlation (STOCH common).

Degradation estimation code for the nonequilibrium CDE (Table 6.4, MODAT common).

Initial number of integration points for Gauss Chebyshev (default is 75 in subroutine CONST],
blank common).

Nonequilibrium model code (Table 6.4, MODAT common).

Boundary value problem code (Table 6.7, BOUND common).

Concentration mode (Table 6.3, blank common).

Index for a stochastic dispersion coefficient defined in subroutine CHECK; MODD = - 1, perfect
negative correlation between v and D; = 0, deterministic D; = 1 perfect positive correlaion; = 2, g, = g,
congtant fidd-sce dispersivity (STOCH common)

Mode code (Table 6.3, blank common).

Initial value problem code (Table 6.8, INITI common).

Calculation control code for step input in subroutine BOUND (MODJH = 0, evauate (3.23) or (3.24);
=1, (3.21) or (3.22) based on Goldstein’s Junction, default is MODJH = 1).

Index for a stochastic distribution coefficient defined in subroutine CHECK; MODK =- 2 for a = g,
=- 1 for pefect negative correlaion between v and X, = 0 for deterministic K, = 1 for perfect positive
correlation (STOCH common).

Production value problem code (Table 6.9, PROD common).

Calculation control code for constant production for the equilibrium CDE in subroutine PRODUC
(MODPL = 0 to evaluate the integral in (2.32); =1 for (2.33) or (2.34), default is MODPI= 1).
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Table Al. (continued)

MPRINT
MPRO
MSD

MSTOCH

NC

NERR

NIT
NOB

NPRO1

Output print code for direct problem (Table 6.11).

Production function code for a nonequilibrium phase (Table 6.9).

Calculation control code for ensemble averages defined in subroutine STOCDE; MSD =0, <C> ;= 1,
<C*, (STOCH common).

Index for stochastic v and n defined in subroutine MODEL; MSTOCH = 1 for variable v and
determinidtic 77, = 2 for deterministic v and variable 7, = 3 for perfect correlation behveen v and 7,= 4
for variable v and variable n (STOCH common).

Number of cases considered (Table 6.3, Main program).

Number of errors in an input file (subroutine CHECK).

Number of steps for stepwise initial distribution (Table 6.8, INITI common).

Number of iteration trials in the least square analysis (Main program).

Number of observations (cannot exceed MAXOB).

Number of parameters to be fitted to the data (Main program).

Number of steps for stepwise production profile in an equilibrium phase (Table 6.9, PROD
common).

Number of steps for stepwise production profile in an nonequilibrium phase (Table 6.9, PROD
common).

Number of pulses for multiple pulse input (Table 6.7, BOUND common).

Data input and output code (Table 6.3, MODAT common).

Number of output times for adirect problem (Table 6.11).

Number of transport parameters (subroutine DATAIN).

Number of trials to decrease SSQ (Main program).

Vaue of NVAR + 1 (Main program, subroutine DATAIN).

Vaue of NVAR x 2 (Main program, subroutine DATAIN).

Totd number of parameters (subroutine DATAIN, MODAT common).

Number of output positions for a direct problem (Table 6.11).
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Table A2. List of Real Variables

Aor AA
AVEV
ALPHA
ANGLE
BorBB
BETA
BETR
BMASS
CBOU1
CBOU2
CINTI1
CINT2
CORR
CPRO1
CPRO2
X

D orDIS
DA

DK
DMASS
DMUI1
DMU2
DT
DUMTZ

DZ
GA
GD

LEVEL

OMEGA
OMMAX
Por PEC
RorRE
PHIIM
PHIM

RHOTH
SDLND
SDLNV
SDLNY
SSQ
STEP
STOPCR

«’/(wp,) AR defined in subroutine DETCDE (blank common).
Mean pore-water velocity, <v> (subroutine CONPROV).
First-order kinetic rate coefficient, 2 (STOCH common).
Deviation of the correction vector from the steepest descent direction (Main program).
(@+u)/(1- PR defined in subroutine DETCDE (blank common).
Partition coefficient, # (blank common).

Value of #x R (blank common).
Mass for Dirac delta input (subroutine BOUND).

Equilibrium concentration for boundary value problem (subroutine DETCDE).
Nonequilibrium concentration for boundary value problem (subroutine DETCDE).
Equilibrium concentration for initial value problem (subroutine DETCDE).
Nonequilibrium concentration for initial value problem (subroutine DETCDE).
Correlation coefficient between v and 5 for stochastic model, p,,, (STOCH common).
Equilibrium concentration for production value problem (subroutine DETCDE).
Nonequilibrium concentration for production value problem (subroutine DETCDE).
w/(wtu,) defined in subroutine DETCDE (blank common).
Dispersion coefficient, D (STOCH common).

wy,/(wty,) defined in subroutine DETCDE (blank common).

Distribution coefficient for liner adsorption, X, (STOCH common).

Mass for a Dirac delta initial condition (subroutine INTTIAL).

First-order decay coefficient in an equilibrium phase, 4% or g,, (blank common).
First-order decay coefficient in a nonequilibrium phase, 4,, (blank common).

Time increment for output in a direct problem.

Time or position for the solute profile or breakthrough for INPUTM = 1

in an inverse problem (Table 6.10).

Spatial increment for output in a direct problem.

Constant for the Levenberg-Marquardt method (default is 0.01 in subroutine CONST1).
Trial and error factor for GA for the Levenberg-Marquardt method (default is 10 in subroutine
CONST1).

The maximum order for the log-transformed Romberg integration (the value will be adjusted internally
depending on the Peclet number in subroutine CONST2, blank common).
Mass transfer coefficient, w (blank common).
Maximum constraint for @ (default is 100 in subroutine CONST1).

Peclet number (blank common).
Retardation factor (blank common).

Immobile water fraction for the physical nonequilibrium CDE, 8,/6 (MODAT common).
Mobile water fraction for the physical nonequilibrium CDE, ¢,= 6, /8 (Table 6.4, MODAT
common).

p,/6 for the stochastic CDE (STOCH common).

Standard deviation of In D, g, (STOCH common).

Standard deviation of In v, g, (STOCH common).

Standard deviation of In 7, 0, (STOCH common).

Sum of squared residuals (Main program).

Scale factor for the correction vector (Main program).
Iteration criterion. The curve-fitting process stops when the relative change in the ratio of all
coefficients becomes less than STOPCR (default is 0.0005 in subroutine CONST1).
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Table A2. (continued)

STOPER

STSQ

Tl
TMAX
TMIN
1T

\%
XLNM

Stop criterion for the log-transformed Romberg integration (inid setting is 5.E-8 and the vaue will be
adjusted internally depending on the Pedet number in subroutine CONST2, blank common).

Stop criterion for the iteration based on the improvement of SSQ.  If the relative improvement in SSQ
islessthan STSQ continuoudly for three times, the iteration will stop (currently set to 1 .E-6 in subroutine
CONSTY).

Initial value of output time for a direct problem.

Modified upper integration limit for the solution for Dirac or step input (subroutine BOUND).
Modified lower integration limit for the solution for Dirac or step input (subroutine BOUND).

Time for the calculation (blank common).

Pore-water velocity, v (STOCH common).

Mean of logtransformed variables in lognormal distribution (subroutine LIMIT).

Mode for alognormal digtribution (subroutine LIMIT).
Upper integration limit for v evauated by subroutine LIMIT
Lower integration limit for v evaluated by subroutine LIMIT
Upper integration limit for n evauated by subroutine LIMIT
Lower integration limit for 7 evaluated by subroutine LIMIT
Initid value of output position for direct problem.
Characteristic length for dimensionless parameters (Table 6.3, MODAT common).
Position for the calculation (blank common).

—~

STOCH common).
STOCH common).
STOCH common).
STOCH common).

—_
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Table A3. List of Significant Arrays

A(15,15)
B(30)

BI(15)
INDEX( 15)
BMAX(15)
BMIN(I5)
C(MAXOB)
C1(MAXOB)
C2(MAXOB)
CINI(I0)
D(15,15)
DERL(30)

GAMMAZL(10)
GAMMAZ2(10)
P(15)

PHI(15)
PULSE(10)
Q(15)
TMAXOB)
TPULSE(I0)

Scaled matrix of D(15,15) (Main program).

Initia values for each codfficient (Table 6.5,6.6).

Coefficient names.

Parameter estimation index (Table 6.5, MODAT common).

Maximum constraints for parameter estimation (Table 6.5).

Minimum constraints for parameter estimation (Table 6.5).

Observed concentrations for inverse problem (Table 6.10).

Equilibrium concentrations.

Nonequilibrium concentrations.

Concentration constants for IVP (Table 6.8, INITI common).

Terms defined by (5.26) (Main program).

Constants for evaluating derivatives given by (5.29) (currently set to 1.D-2 for dl parametersin
subroutine CONST1).

Production constants in equilibrium phase (Table 6.9, PROD common).
Production constants in nonequilibrium phase (Table 6.9, PROD common).
Correction vector for parameter etimation (Main program).

Scaled vector of Q( 15) (Main program).

Concentration constants for BVP (Table 6.7, BOUND common).
Terms defined by (5.27) (Main program).

Times.

Time congtants for BVP (Table 6.7, BOUND common).

VARl (MAXOB) Variances for equilibrium concentrations.
VAR2(MAXOB) Variances for nonequilibrium concentrations.

Z(MAXOB) Positions.

ZINI(10) Position constants for IVP (Table 6.8, INITI common).

ZPROI(10) Position constants in equilibrium phase for the PVP (Table 6.9, PROD common).
ZPR0O2( 10) Position constants in nonequilibrium phase for the PVP (Table 6.9, PROD common).
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